
Nexus: A New Approach to Replication in Distributed Shared Caches

Po-An Tsai

MIT CSAIL

poantsai@csail.mit.edu

Nathan Beckmann

CMU SCS

beckmann@cs.cmu.edu

Daniel Sanchez

MIT CSAIL

sanchez@csail.mit.edu

Abstract—Last-level caches are increasingly distributed, con-
sisting of many small banks. To perform well, most accesses
must be served by banks near requesting cores. An attractive
approach is to replicate read-only data so that a copy is
available nearby. But replication introduces a delicate tradeoff
between capacity and latency: too little replication forces cores
to access faraway banks, while too much replication wastes
cache space and causes excessive off-chip misses.

Workloads vary widely in their desired amount of replica-
tion, demanding an adaptive approach. Prior adaptive replica-
tion techniques only replicate data in each tile’s local bank, so
they focus on selecting which data to replicate. Unfortunately,
data that is not replicated still incurs a full network traversal,
limiting the performance of these techniques.

We argue that a better strategy is to let cores share replicas
and that adaptive schemes should focus on selecting how
much to replicate (i.e., how many replicas to have across the
chip). This idea fully exploits the latency-capacity tradeoff,
achieving qualitatively higher performance than prior adaptive
replication techniques. It can be applied to many prior cache
organizations, and we demonstrate it on two: Nexus-R extends
R-NUCA, and Nexus-J extends Jigsaw. We evaluate Nexus on
HPC and server workloads running on a 144-core chip, where
it outperforms prior adaptive replication schemes and improves
performance by up to 90% and by 23% on average across all
workloads sensitive to replication.

Keywords-cache, data replication, NUCA, multicore

I. INTRODUCTION

To scale beyond a few cores, future systems must tackle the

high costs of data movement, which are orders of magnitude

more expensive than basic compute operations for most

applications [15, 20]. To this end, last-level caches (LLCs)

have become distributed and expose non-uniform cache

access (NUCA [30]): each core enjoys fast and cheap accesses

to nearby cache banks, but accesses to faraway banks are

slow and expensive. To scale, future systems must serve most

accesses from nearby cache banks.

Prior work in dynamic NUCA (D-NUCA) has studied

replication of read-only data as an effective way to reduce

data movement, allowing multiple replicas of the same line

to exist in different cache banks [49]. Replication exploits

the insight that an application’s working set often does not

use the full cache capacity. For example, Fig. 1 shows the

data placement for different replication policies in a tiled

multicore. Each square represents a tile, with a core and

an LLC bank. There are four addresses (A, B, C, and D).

Each letter in Fig. 1 represents a replica of the corresponding

data. At one extreme, Fig. 1a shows a data layout with no

replication (i.e., only one replica, which we call a replication

A

C

B

D

Max distance: 6 hops

Capacity used: 4 lines

(a) Repl. degree 1.

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

AB
CD

Max distance: 0 hop

Capacity used: 64 lines

(b) Repl. degree 16.

AA AA

AA AAC

ABA AA

AA ADA

Distance: 1 or 6 hops

Capacity used: 19 lines

(c) Prior work.

Figure 1: Data replication in NUCA with different degrees. Higher replication
degree reduces the distance between cores and data, but consumes more
cache space.

degree of 1). Data is spread across the chip, and, in the worst

case, cores have to cross the chip to access the data. At the

other extreme, Fig. 1b shows the layout with full replication

(i.e., a replica in all 16 banks, or replication degree of 16).

Full replication eliminates network traversals, but consumes

much more cache space.

Neither of these extremes works well in all cases. For

example, consider a multithreaded application that uniformly

accesses 16 MB of read-only data on a system with 64×1 MB

banks. Not replicating data (like Fig. 1a) is inefficient, since

cores must cross the chip to access data while three-quarters

of the cache remains empty. But replicating data into the local

bank (like Fig. 1b) also works poorly because the footprint

of read-only data exceeds the capacity of the local bank. In

this system, only 1 MB of the read-only data fits in a local

bank, so the remaining 15 MB must be served elsewhere.

Prior work has proposed adaptive replication to navigate

these extremes. These schemes were developed in the context

of directory-based D-NUCAs, where a core first accesses

its local cache bank and, upon a miss, must check a global

directory, incurring a full-chip network traversal (Sec. II).

Because capacity in the local bank is scarce, prior adaptive

replication schemes [4, 16, 21, 31, 34, 49] focus on selecting

which lines to replicate. That is, they select which of A,

B, C, and D to replicate into the local bank, adapting

between no (Fig. 1a) and full (Fig. 1b) replication for

different data. Compare, e.g., A vs. B, C, and D in Fig. 1c.

These schemes are beneficial when some data is accessed

particularly frequently, but since they only adapt between the

extremes of replication, their performance improvements are

often limited—e.g., they can serve at most 1/16th of accesses

locally in the above example.

A new approach to adaptive replication: A more effective

strategy is to spread replicas across cache banks and let cores

access their closest replica. In this example, the best policy is

BA BA

DC DC

BA BA

DC DC

Max distance: 2 hops

Capacity used: 16 lines

Figure 2: Replication de-
gree of 4 is best.

to replicate the 16 MB four times

across the chip (replication degree of

4, Fig. 2). Further replication is un-

desirable because a 64 MB LLC can

only fit four copies of a 16 MB work-

ing set, so further replication would

cause expensive off-chip misses. With

four replicas, all accesses are served

from nearby banks (albeit at slightly

larger distance), a major improvement

over prior schemes that serve just

1/16th locally.

One challenge is how cores can quickly find their closest

replica. Classic directory-based D-NUCAs must check the

global directory before accessing nearby banks, but more

recent NUCA organizations like R-NUCA [19] and Jigsaw [6]

avoid a global directory and thus support fast accesses to

nearby banks. This grants these schemes enormous flexibility:

data can be mapped to the local bank, nearby banks, or banks

across the chip, and cores can share replicas.

Different replication degrees make different tradeoffs

between capacity and latency, but prior adaptive replication

schemes do not fully exploit this tradeoff. Instead, they

replicate either everywhere or not at all, and focus on

selecting which data to replicate. This sufficed for small

systems, where there are few degrees between the extremes,

but leaves significant performance on the table as systems

scale. For many workloads, the best replication degree

achieves qualitatively better performance than either extreme.

Thus, the key idea of this paper is that adaptive replication

techniques should focus on how much to replicate.

Why focus on how much to replicate? Fig. 3 answers this

using a simple analytical model that generalizes the example

in Fig. 1. We model a multithreaded application where each

thread regularly scans over shared read-only data, running

on a 144-core system with a 512 KB L2 bank per core, as

in our evaluation (Sec. VI-A). Our model gives the average

distance to the closest replica under different replication

schemes. Fig. 3 shows how the average L2 access latency

(y-axis) changes with the footprint of the read-only data

(x-axis, log-scale). We have verified this model against a

microbenchmark in simulation. See the appendix for details.

At one extreme, full replication has each core first check

its local L2 bank and then, upon a miss, check a remote,

“home” L2 bank. When the read-only data fits in an L2 bank

(i.e., footprint < 512 KB), cores can access it at low latency.

However, as the footprint grows beyond a single bank, an

increasing fraction of accesses miss and full replication’s

access latency is quickly dominated by memory latency.

At the other extreme, no replication combines all L2 banks

into a single shared cache, so all accesses are to remote banks.

64KB
(L1 cache)

512KB
(Local L2 bank)

6MB 72MB
(Full L2 size)

256MB

Read-only data footprint (log scale)

Local L2 bank

Remote L2 bank

Local ! Remote

Memory

A
c
c
e
s
s
 l
a
te

n
c
y

(a
ft

e
r

L
1
s
)

Full replication

No replication

Selective replication

Nexus

Figure 3: Adapting the replication degree lets Nexus achieve qualitatively
better performance than prior work over a wide range of data footprints.

As long as the read-only data fits in the L2 (i.e., footprint

< 72 MB), cores can find the data on-chip in a remote L2

bank. Beyond the L2 size, an increasing fraction of accesses

miss and, once again, access latency is quickly dominated by

memory latency. No replication thus can fit a larger footprint

than full replication, but incurs a higher latency to do so.

Prior selective replication schemes combine the benefits

of full or no replication, choosing whether to replicate

depending on the workload. When the footprint is small (i.e.,

footprint < 512 KB), selective replication achieves access

latency as low as full replication, and when the footprint

is larger but still fits in the L2 (i.e., 512 KB < footprint <
72 MB), selective replication achieves access latency close

to no replication. (But slightly worse because selective

replication must check the local bank first.)

We propose that last-level caches should adapt the replica-

tion degree, and we call this concept Nexus. Nexus adapts

replication degree to the workload, creating multiple replicas

that are shared among cores. Moreover, because Nexus builds

on recent directory-less D-NUCAs (Sec. II), cores only need

to check a single L2 bank to find the closest replica. At the

extremes, Nexus performs similarly to selective replication:

when the read-only data fits in a single L2 bank, cores access

their local L2 bank; and when it barely fits in the L2, cores

access a remote bank. (Nexus slightly outperforms selective

replication since it only checks a single L2 bank).

However, as Fig. 3 shows, at intermediate read-only

footprints, Nexus handily outperforms prior approaches. For

example, when the footprint is 6 MB, Nexus creates twelve

6 MB replicas spread evenly throughout the chip (similar

to Fig. 2). Cores enjoy low access latency to their nearby

replica, whereas in selective replication cores must access

a remote L2 bank. The latency gap is large: 2.6× at 6 MB.

Thus, for a large range of footprints—between 512 KB and

72 MB—Nexus achieves qualitatively better performance

than selective replication.

Contributions: Applications vary widely in their working

set size, how frequently they access read-only data, and

how they share read-only data [3]. We find that applications

thus have strong preferences for different replication degrees,

with performance differing by up to 2.5× across degrees.

Moreover, some applications prefer different degrees on

different inputs, demanding a dynamic approach (Sec. III).

We present two implementations of Nexus that transpar-

ently optimize the replication degree: Nexus-R extends R-

NUCA [19] to replicate all read-only data (not just instruc-

tions) and adapt the replication degree through set-sampling

(Sec. IV). Nexus-J extends Jigsaw [6] to recognize read-only

data and extends Jigsaw’s runtime to adapt the replication

degree (Sec. V). Nexus-R is simple and works well for

single multithreaded programs, while Nexus-J adds modest

complexity to perform better on multiprogram workloads.

We evaluate Nexus with scientific and server multithreaded

workloads, which often have large read-only data and code

footprints [3, 27] (Sec. VI). At 144 cores, Nexus improves

performance by 23% on average and by up to 90%, outper-

forming a state-of-art selective replication scheme by 20%.

II. BACKGROUND

Dividing capacity across several banks mitigates growing

wire delays, but exposes non-uniform cache access (NUCA)

to different banks. Common many-core NUCA designs, such

as Intel Knights Landing [45] and Tilera TILE-Gx [46], use a

tiled organization like the one shown in Fig. 4. Each tile has

a core, private caches, and an LLC bank. Tiles communicate

through an on-chip network. The simplest scheme is static

NUCA (S-NUCA) [30], which uniformly spreads data across

banks with a fixed line-bank mapping. While S-NUCA is

simple, it suffers from a large average network distance.

M
e

m
/ IO

Tile OrganizationTiled CMP Architecture

LLC Bank

NoC Router

Core

L1I L1D

Mem / IO

M
e

m
/

IO

Mem / IO

TileNoC (Mesh)

Figure 4: Tiled architecture. Each tile contains a core, private L1I/D, and a
shared LLC bank. A mesh NoC connects all tiles.

Dynamic NUCA schemes (D-NUCAs) reduce data move-

ment by dynamically placing data near where it is used.

D-NUCAs and their replication strategies can be broadly

classified into two categories based on if they require a global

directory. Historically, directory-based D-NUCAs came first

and are the context in which prior work has considered

adaptive replication. Table I summarizes the key differences

among replication strategies, which we explain in detail next.

Directory-based D-NUCAs: D-NUCAs originated from a

private-cache baseline. The local bank at each tile is treated

as a private cache and other tiles act as a large, backing

shared cache [5]. Cores first check their local bank, then

TABLE I: COMPARISON OF NEXUS AND PRIOR D-NUCAS.

Scheme
Data

replication
Single
lookup

Dynamic
replication

Replicas shared
across cores

Victim
replication [49]

✔ ✘ ✘ ✘

ASR [4] ✔ ✘ ✔ ✘
Locality-aware

replication [31]
✔ ✘ ✔ ✘

R-NUCA [19] ▲
1

✔ ✘ ✔

Jigsaw [6] ✘ ✔ ✘ ✘

Nexus ✔ ✔ ✔ ✔

1Instructions only

access the line’s home bank on a miss, where a directory

stores the location of all sharers of the line. These designs

place all LLC capacity under a directory coherence protocol,

which adds significant area and energy overheads.

Replication naturally arises in these organizations as local

banks keep copies of read-shared data [49]. However, since

capacity is limited, a key question becomes which data should

be replicated? Prior work has explored many techniques to

decide what lines should be replicated [4, 9, 11, 22, 23,

31, 34, 38]. However, these schemes are still limited to

replicating in the local bank, and cores do not share replicas.

This is a significant limitation—read-only data often does

not fit in a single cache bank, and directory-based schemes

cannot fully exploit the latency-capacity tradeoff, as we have

seen in Sec. I.

Moreover, private caches (e.g., L1s) already replicate data,

serving most programs’ hottest data before it ever reaches

the LLC. It is only the lukewarm data, which is somewhat

frequently accessed but does not fit in private caches, that

benefits from selective replication in the LLC. Thus, a more

important problem at the LLC is deciding how much to

replicate the remaining data, not selecting which of the

remaining data merits replication.

Directory-less D-NUCAs: Some D-NUCA schemes instead

build from a shared-cache baseline and do not require a

directory [2, 6, 10, 12, 19, 26]. Banks are not under a

coherence protocol; instead, virtual memory is used to place

and replicate data. A page’s on-chip location is tracked in

software by extending each page table entry with metadata

that directly or indirectly determines the page’s LLC bank.

This metadata is cached in the TLB so that the LLC bank can

be quickly determined upon an L1 miss. Page table entries

are updated in response to program behavior; e.g., if a read-

only page is written, its LLC bank might change, forcing

the OS to invalidate all replicas through a TLB shootdown.

These reclassifications are expensive but very rare.

Prior work [14, 19, 41] has studied how these virtual

memory modifications interact with other OS mechanisms,

such as TLB shootdowns and thread migrations, and has

shown that they introduce modest complexity and overheads.

Parallel TLB shootdowns [13, 37] can be used to significantly

reduce page reclassification overheads. We assume the same

basic OS support for directory-less D-NUCA as our baseline

schemes [6, 19], and Nexus introduces no new complications.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
e

rf
.

v
s
.

S
-N

U
C

A

svm
253

svm
30

botsspar
ref

botsspar
train

kdtree
ref

kdtree
train

canneal
native

canneal
simlarge

raytrace
balls4

SpecJBB strm-clstr
simlarge

swaption
simlarge

Replication Degree 1 2 3 4 6 9 12 24 36 48 72 144

1.00

1.05

1.10

1.15

1.20

1.25

1.30

B
e

s
t

g
m

e
a

n
 p

e
rf

o
rm

a
n

c
e

1 2 3 4 5 6 7 8 9 10
Number of

supported degrees

Figure 5: Exhaustive replication degree study. Left: Performance of replication-sensitive applications using modified R-NUCA with different fixed degrees.
Right: Best gmean performance when supporting n different degrees.

The main benefit of directory-less D-NUCAs is that, since

software maintains coherence at coarse granularity, each core

needs to lookup only a single location for a given address,

without first checking a global directory. This grants these

schemes enormous flexibility in where they place data and

how cores share replicas, the key advantage that lets Nexus

exploit many different replication degrees.

Unfortunately, adaptive replication has received scant

attention in directory-less D-NUCAs. While some schemes

divide pages into classes and use different placement policies

for each class, none adapt the replication degree to the

application. R-NUCA [19] specializes placement for three

classes of data (instructions, private data, and shared data),

replicates instructions at a statically fixed degree, and does

not replicate shared data. Jigsaw [6, 7] lets software divide

the distributed cache into finely-sized virtual caches and

maps pages to different virtual caches, but Jigsaw never

replicates data. Even though prior work [23] has argued for

flexible sharing degrees, none has studied how to adapt to

the right degree on-the-fly for directory-less D-NUCAs.

Nexus fills this gap. We show that adapting the repli-

cation degree in directory-less D-NUCAs gives significant

performance benefits and outperforms prior, directory-based

adaptive replication strategies (Fig. 3, Sec. VI-B). We also

show that simply replicating read-only data in directory-

less D-NUCAs at a fixed degree is insufficient: adapting the

replication degree is the key to high performance (Sec. VI-C).

III. WORKLOAD CHARACTERIZATION

To motivate Nexus’s design, we study applications’ sen-

sitivity to replication degree and characterize how they

share data. We choose representative replication-sensitive

applications that illustrate our points as simply and clearly

as possible and defer an exhaustive evaluation to Sec. VI.

A. Sensitivity to replication degree

A few replication degrees suffice: The best replication

degree varies across applications and inputs, but how many

different degrees must the system support? One could imagine

supporting degrees at fine granularity, but in fact a few

coarsely-spaced degrees are enough.

To see why, consider the cluster of tiles sharing a single

replica (e.g., quadrants in Fig. 2). Increasing the replication

degree decreases both the distance across the cluster and

the cache capacity in the cluster. But the distance does not

decrease proportionally—in a mesh, it follows the square root

of cluster size. And misses do not decrease proportionally,

either—a typical rule-of-thumb is that miss rate follows the

square root, too. Since larger clusters give diminishing returns,

it suffices to consider a few, unevenly spaced degrees.

Fig. 5 validates this intuition by showing the performance

of many workloads on R-NUCA, modified to replicate all

read-only data (see Sec. IV), at 12 different replication

degrees. While the best replication degree varies widely

across applications, similar degrees generally yield similar

performance. For example, degrees 9 and 12 perform simi-

larly across studied workloads, as do other pairs. Therefore,

a small subset of degrees gets most of the benefit.

The right of Fig. 5 shows the gmean performance when

limited to supporting a few replication degrees. That is, we

consider all possible combinations of n degrees from the 12 in

Fig. 5 and use the best of these n for each application. From

all combinations of n degrees, we then select the combination

that achieves the best gmean performance. This graph shows

that supporting 4 degrees matches the gmean performance

of supporting all 10 degrees. With 144 cores, the best choice

of 4 degrees is 1, 9, 36, and 144. These are the degrees that

we will support in Nexus.

No single replication degree works in all cases: Fig. 6

shows the performance of three applications with different

inputs on a 144-core system, again using modified R-NUCA.

kdtree prefers full replication (degree 144) with input

train, but no replication (degree 1) with input ref. Mean-

while, svm prefers replication degree 9 for input 30, but

no replication (degree 1) for input 253. Finally, botsspar

prefers full replication on input train, but replication degree

36 on input ref. No single replication degree works well

for all applications, and each replication degree is best for

some application and input set. Moreover, the choice matters:

choosing the wrong replication degree affects performance

by up to 2.5× (botsspar with large input). Therefore, it is

crucial to adapt the replication degree to applications.

To understand these results, consider the read-only foot-

print for these applications with different replication degrees,

shown in Fig. 7. We define the footprint as the smallest cache

size where the miss rate is < 1%. Dashed lines indicate the

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
e

rf
.

v
s
.

S
-N

U
C

A

kdtree
train

kdtree
ref

svm
30

svm
253

botsspar
train

botsspar
ref

Replication Degree 1 9 36 144

Figure 6: Performance of R-NUCA vs. static NUCA for different replication
degrees of read-only data. No single replication degree works well in all
cases.

2-32-12123252729211213

F
o

o
tp

ri
n

t
(M

B
)

kdtree
train

kdtree
ref

svm
30

svm
253

botsspar
train

botsspar
ref

LLC Capacity

Replication Degree 1 9 36 144

Figure 7: Memory footprints of read-only data with different replication
degrees.

total LLC capacity in the system. Since these applications

are dominated by read-only data, replication is beneficial up

until the read-only footprint exceeds the LLC capacity.

Given this insight, it is not surprising that applications

strongly prefer different replication degrees, as they have

very different read-only footprints. For kdtree-train and

botsspar-train, replication degree of 144 is best because

the read-only footprint for each thread is very small, so the

total footprint with replication degree 144 is still smaller than

the LLC. On the other hand, when the read-only footprint is

very large, such as in kdtree-ref and svm-253, replication

is harmful because the footprint does not fit in the LLC, and

replication increases the number of misses.

Applications want intermediate replication degrees: How-

ever, many applications whose per-thread footprint exceeds a

single LLC bank can still benefit from replication. In svm-30

and botsspar-ref, the per-thread read-only footprint is

large, so the total read-only footprint with replication degree

144 is larger than the LLC. The best choice for these apps

is to use an intermediate replication degree: degree 9 for

svm-30 and degree 36 for botsspar-train. By replicating

less aggressively, the system can cache the entire working

set and reduce network traversals, as in Fig. 2. Prior adaptive

replication schemes, which replicate only in the local bank,

cannot help these apps: they suffer either many misses (with

replication) or many network traversals (without).

From these observations, it is clear that replication is not

always beneficial, and even when it is, a fixed replication

degree cannot work well for all cases. The best replication

degree depends on system size, LLC size, application behav-

ior, input size, and even interactions between applications. It

is unreasonable for programmers to reason about all of these

factors. Instead, the system should transparently optimize the

replication degree, freeing the user of this burden.

Replication degrees are stable: We find that workloads

quickly converge to a stable replication degree that rarely

changes (although it depends on application and input).

Hence, while Nexus does support dynamic adaptation and

this is important for real-world systems where apps come

and go, this feature is not emphasized in our evaluation.

B. Classification in directory-less D-NUCAs

Coarse-grain data classification suffices: Nexus builds on

top of directory-less D-NUCAs, which let cores share replicas

and find the closest one with a single lookup. The cost of

this flexibility is that these schemes classify data at page

granularity, unlike directory-based D-NUCAs that replicate at

1.00

1.05

1.10

1.15

1.20

1.25

1.30

G
m

e
a
n
 s

p
e
e
d
u
p

64B

256B

1KB

4KB

Figure 8: Performance of mod-
ified R-NUCA with different
page sizes.

line granularity. Similar to prior

work [7, 14, 19], we find there is

little performance penalty with

4 KB pages. Fig. 8 shows the per-

formance of modified R-NUCA

with different page sizes, from

64 B to 4 KB, when using the

best degree for each workload

and perfect TLBs. Using 64 B

pages improves performance by

only 3% over 4 KB pages.

Data classifications are stable over time: Nexus only

replicates read-only data, so the amount of data classified

as read-only can strongly influence Nexus’s performance.

In designing Nexus, we originally believed that dynamic

data classification would be a critical feature. However,

to our surprise, we find that it is not: across sixty server

and scientific benchmarks, only one benchmark (barnes)

benefits significantly from dynamic reclassification. We thus

present Nexus with one-way data classification for simplicity

and clarity. Its limitations can be addressed by dynamically

reclassifying pages, as in recent work [17, 41], which we

evaluate as a case study (Sec. VI-E).

IV. NEXUS ON R-NUCA (NEXUS-R)

Any prior directory-less D-NUCA can benefit from adapt-

ing the replication degree. The first implementation we de-

scribe is Nexus-R, which extends R-NUCA [19] to replicate

all read-only data at an adaptive degree. Our design goal is

a simple scheme that works well on single multithreaded

applications. Nexus-R monitors the performance of different

replication degrees using set sampling [40] and adopts the

degree that performs best. Since all threads in a process

should agree on their replication degree, we introduce simple

OS support to coordinate degrees within a process.

A. Background: Reactive NUCA

Reactive NUCA (R-NUCA [19]) classifies pages into three

categories (instructions, private data, or shared data) and uses

Private data

Instructions

Shared data

Figure 9: Data placement in R-
NUCA.

different placement policies for

each. Fig. 9 illustrates how R-

NUCA places data by showing

which banks are possible loca-

tions for data in each category,

starting from the core in the

center of the chip. Private data

is mapped to the local bank

to minimize access latency, and

shared data is striped across

banks to keep a single copy

for coherence. Instructions, on

the other hand, are replicated

at a fixed degree with 1 replica for every 4 tiles. This is

because the server workloads studied in R-NUCA [19] have

instruction footprints that cannot fit in local bank, but do fit

in a cluster of 4 banks. R-NUCA also introduces rotational

interleaving, a specialized lookup mechanism that finds the

closest replica from every core, by labeling banks 1 through

4 and using the closest bank of each label (see Fig. 9). The

replication degree in R-NUCA is determined by the cluster

size (e.g., at 36 cores, cluster size 4 gives degree 36/4 = 9).

R-NUCA updates data classification by leveraging the

virtual memory system. Pages start as private to the thread

that first touches them, and any change in their usage is

captured on a TLB miss. For example, when another thread

first accesses an address, it triggers a TLB miss and the page

is reclassified to shared. This changes its location (i.e., it

is now striped across banks throughout the chip), so the OS

shoots down the TLB entry in the original core, after which

both cores now access the shared page normally. While TLB

shootdowns are expensive, page reclassifications are rare.

B. Data classification in Nexus-R

Nexus-R extends R-NUCA to replicate all read-only pages.

Fig. 10 shows the resulting per-page state transition diagram.

All read-only pages, not just instructions, are mapped to

clusters and replicated.

Private
Shared

read-only

Shared

read-write

1

2

3

Read from other thread

Write from any thread

Write from other thread

1

2 3

Figure 10: Page state transition dia-
gram in Nexus-R.

Figure 11: Example data mapping
in Nexus-R.

A page starts as private, a read access from other core

upgrades it to shared read-only, and a write access from

other core upgrades it to a shared read-write page.

C. Replication in Nexus-R

Nexus-R monitors the latency of different replication

degrees to select the best one. We use set sampling [40],

but differ from prior work in that (i) we monitor fine-grain

latencies, vs. counting discrete events; and (ii) we choose

from several options, vs. making a binary choice.

Supporting multiple degrees: The replication degree in R-

NUCA is controlled by the cluster size, but R-NUCA only

supports power-of-2 cluster sizes. In fact, it is straightforward

to support arbitrary sizes with a simple indexing function.

For example, to support size of 9 (degree of 4) in a 6x6 chip,

we label tiles as in Fig. 11. Each tile accesses the nearest

bank for each label. Thus, each tile’s cluster consists of the

9 closest banks with different labels (computed ahead-of-

time). In each core, Nexus-R adds a register to store the

current cluster size and a circuit that finds the label for a

given address, which does not need complex arithmetic [43].

This generalization supports arbitrary cluster sizes, and thus

arbitrary replication degrees.

Monitoring degrees: Each degree is assigned to a small

number of sampling sets that always use that degree, as

shown in Fig. 12. Nexus-R compares the average memory

access latency of each degree by monitoring the latency of

accesses to each sampling set.

Specifically, Nexus-R maintains a long-run cumulative

latency difference between all pairs of degrees. We denote

the latency difference between degrees a and b as ∆
b
a. By

convention, positive ∆
b
a indicates that b is higher latency,

and negative ∆
b
a indicates that a is higher latency. With four

supported degrees, Nexus-R must maintain six counters (∆4
1,

∆
9
1, ∆

36
1 , ∆

9
4, ∆

36
4 , and ∆

36
9).

When a sampled access completes, Nexus-R updates the

counters by adding or subtracting its latency as appropriate,

as shown in Fig. 13. For instance, when a sampled access

to degree 4 completes, we add its latency to ∆
4
1 and subtract

its latency from ∆
9
4 and ∆

36
4 . These counters all saturate at

some maximum absolute value (217 in our evaluation).

For the latency differences to be meaningful, it is important

that they capture all interactions with other threads in

the system. We therefore assign sampling sets to avoid

overlapping with each other. That is, process 0 samples

in sets 0 to 3, process 1 in sets 4 to 7, and so on, as shown

in Fig. 12c. This is implemented by determining the sampling

sets from the local core’s active process id.

Choosing a degree: Counters then “vote” on the best

replication degree. Positive values of ∆
b
a indicate that a

is better than b, and negative values the opposite. If ∆
b
a’s

value exceeds half the maximum (i.e., ∆
b
a > 216), then it

votes for degree a; otherwise, if less than half the minimum,

then it votes for b. This mechanism requires just a simple

combinational circuit that takes MSBs of counters to 4 AND

gates and votes with a 4-1 decoder. If any degree achieves

consensus (3 votes with 4 supported degrees), it becomes

the active replication degree.

1

4

16

9

Sampling sets

for cluster size:

Active thread:

(shade = process)

LLC bank:

(a) From top-left thread. (b) From same process. (c) From diff. process.

Figure 12: Set sampling of different replication degrees. Cores spread accesses to read-only data across nearby
banks and monitor their latency. Cores access different banks, processes access non-overlapping sampling sets.

Core

L1

MSHR

Rotational

Interleaving

Logic

Δ1ସ Δସ9 Δସଷ6Δ19 Δ1ଷ6 Δ9ଷ6

1. L1 Miss

2. Sample deg 4

3. Access returns

4. Update

counters
+ − −

Best degree

5. Vote

Latency

Figure 13: Core sampling access to
degree 4. ∆-counters record latency
difference between two degrees.

Changing degrees: Read-only data does not require coher-

ence, so no special coherence actions are required when the

replication degree changes. LLC inclusion is preserved: every

sharer in a private cache is tracked by some LLC directory—

even if it is not the LLC directory that the private cache is

currently mapped to. This requires no coherence changes if

the protocol performs silent drops, a common optimization

(private caches evict clean lines without notifying the LLC

directory, so they will not evict to the wrong directory when

replication degree changes). This means that hardware can

change degrees whenever counters indicate it is beneficial.

Finally, since adaptive replication degree increases the

number of banks where data may reside, the OS needs to

invalidate replicas in more locations when pages transition

from read-only to read-write shared.

D. Coordinated replication degree

The simplest implementation of Nexus-R would let each

core choose its replication degree independently, but this

performs poorly—sacrificing half of the possible gains

(Sec. VI-E). The problem is that there is systematic pressure

towards more replication: Each core is selfish, wanting

its neighbors to replicate as little as possible and itself

to replicate as much as possible. When a core chooses a

higher replication degree, it places additional pressure on the

nearby banks where its data is replicated. This can make its

neighbors’ replicated data no longer fit, reducing the benefits

of replication. Neighboring cores thus prefer to replicate

more aggressively: since their data no longer fits, the best

policy is to miss quickly by replicating in nearby banks.

Hence, there is a tendency towards full replication, even

on applications where the read-only footprint does not fit.

This is a classic coordination problem. A simple solution is

to coordinate decisions among actors, i.e., all threads in the

same process. Since processes are an OS-level construct, we

leverage the OS to coordinate replication degrees.

OS support: We achieve this by exposing the latency-

difference counters as part of the thread context. The OS

then tracks per-process latency differences that are used to

decide the replication degree for the entire process.

The OS is responsible for initializing a core’s local counters

to the process counter values upon thread migration, creation,

or context switch. The OS also records this value (e.g., on the

stack). Then, on each OS scheduler tick or context switch, the

OS computes the difference between the current value and

the last recorded value. It uses this second-order difference to

update the per-process difference counters. Since changes to

the best degree are rare, the OS tick rate is frequent enough.

E. Overheads

Nexus-R introduces small overheads on top of R-NUCA.

We find that, with 32-way caches, a single sampling set

per degree suffices. (With a single multi-threaded process,

the total number of sampling sets per degree equals the

number of cores.) Using 512 KB banks, 1.5% of accesses

are sampled, and only three-quarters of these (1.1%) use the

“wrong” degree. Counters add 17× 6 = 102 bits per core,

and the combinational logic for indexing banks and voting

adds small overheads. The OS support is tens of instructions

per context switch, a small addition to R-NUCA’s existing

support for page reclassification and thread migration.

F. Related work

Qureshi et al. [40] originally proposed set dueling, which

been widely applied in caching techniques. Our design is

similar to TADIP-F [24] in that each process monitors its

behavior against a background of the decisions of other

processes. However, it differs in that (i) it chooses among

4 options for each process, rather than a binary choice,

(ii) sampling plays out across several banks, rather than

within a single bank, and (iii) decisions must be coordinated,

rather than independent.

V. NEXUS ON JIGSAW (NEXUS-J)

Nexus-R works well for a single multithreaded application.

However, prior work [2, 6, 7, 32] has shown that, in

multi-programmed workloads, managing capacity among

applications is critical to improve system throughput and

fairness. Nexus-J extends Jigsaw [6, 7], which already

manages LLC capacity, to support adaptive replication of

read-only data. Nexus-J adds a few extra hardware monitors

to those already used in Jigsaw, and enhances the Jigsaw

software runtime to choose the best replication degree during

capacity allocation. Nexus-J thus handles more complicated

workloads with modest added complexity.

A. Background: Jigsaw
ThreadData

Figure 14: Jigsaw divides
LLC banks into virtual

caches (VCs).

Jigsaw is a partitioned, directory-

less D-NUCA. Jigsaw builds virtual

caches (VCs) by combining parti-

tions of physical cache banks, as

shown in Fig. 14 (colors represent

different VCs). Pages are mapped

to a specific VC through the TLB,

as in R-NUCA, but Jigsaw adapts

the placement of VCs by adding a

further layer of indirection. Jigsaw

uses three types of VCs: thread-

private, process-shared, and globally-

shared. Pages start as private to the thread that allocates them,

and are upgraded lazily: e.g., an access from another thread

upgrades the page to the process VC, and an access from

another process upgrades the page to the global VC.

Jigsaw has hardware and software components. In hard-

ware, Jigsaw augments the TLB with the page’s VC id and

adds a small structure to each core, called the VC translation

buffer (VTB), that maps each VC’s accesses to its allocated

banks. (Since each thread accesses only three VCs, the VTB

needs only three entries.)

Jigsaw also uses hardware monitors (GMONs [7]) to

produces miss rate curves for each VC (i.e., the number of

expected misses at different cache sizes). Other than monitors,

the hardware also needs to expose basic information (e.g., the

number of cores and the network topology) to the software

so that Jigsaw’s runtime can optimize VC configuration by

modeling latency curves.

Virtual cache size

Ac
ces

s la
ten

cy
!

Total

Off-chip

On-chip

Figure 15: Access latency.

In software, an OS run-

time periodically (e.g., ev-

ery 50 ms) reallocates LLC

capacity among VCs to min-

imize data movement. Jig-

saw’s runtime models the

expected total access latency

of each VC at different sizes

(Fig. 15), including network

traversals (on-chip latency, from topology information) and

cache misses (off-chip latency, from GMONs). It then

allocates capacity among VCs and places them across LLC

banks while trying to minimize total system latency (see prior

work for further details [6, 7]). The runtime essentially takes

latency curves as the input and produces VC configuration

as the output. Jigsaw does not replicate data.

B. Supporting replication in Nexus-J

Nexus-J extends Jigsaw to create additional read-only VCs

for each process. Pages transition between VCs similar to

Nexus-R: they start as thread-private, but a read from another

thread upgrades the page to the read-only VC first, and writes

update it to the (read-write) process VC.

Nexus-J supports replication by creating multiple read-

only VCs and directing accesses from different core groups

to different replicas. Nexus-J adds another entry for read-

only VCs to each core’s VTB and configures them to use the

closest replica. For example, at degree 4, Nexus-J assigns one

read-only VC replica to each chip quadrant. Hence, threads

running in different quadrants will access different read-only

VCs, but the same read-write VC (see Fig. 16).

2 Thread-private VCs

2 Replicated process

read-only VCs

1 process read-write VC

A: Shared read-write

B: Shared read-only (+replicated)

C: Private to blue thread

D: Private to red thread

C

B

B

A

D

Figure 16: Nexus-J snapshot with 2 threads running on a 16-core system.
Shared read-only data (e.g., B) is replicated, but shared read-write data (e.g.,
A) is not.

When a read-only page is upgraded to read-write, Nexus-J

invalidates the page in every read-only VC to maintain

coherence. Finally, Nexus-J monitors each core group sepa-

rately, letting it capture heterogeneous behavior across groups,

unlike Nexus-R. This helps on some apps (e.g., freqmine).

C. Selecting replication degree in Nexus-J

One of the main benefits of applying Nexus to Jigsaw is

that we can leverage its existing optimization runtime. Jigsaw

uses each VC’s latency curve to allocate capacity among

VCs. Nexus-J changes these latency curves so that Jigsaw’s

runtime automatically chooses the best replication degree.

Latency curves: First, Nexus-J produces the latency curve

for each read-only VC by combining curves for each

replication degree [36, §B], as illustrated in Fig. 17. For

each replication degree, Nexus-J computes the latency curve

for read-only data from each corresponding core group. The

result is intuitive: increasing the replication degree achieves

lower latency, but takes more capacity (e.g., compare degrees

1 and 36). Nexus-J then combines these curves by taking the

minimum (Fig. 17b).

0MB 16MB 32MB 48MB

Capacity

L
a
te

n
c
y

Deg. 1

Deg. 9

Deg. 36

Deg. 144

(a) Curves for each degree.

0MB 16MB 32MB 48MB

Capacity

L
a
te

n
c
y

Use deg. 1

Use deg. 9

Use deg. 36

Use deg. 144

(b) Combined curve.

Figure 17: Nexus-J produces latency curves for read-only VCs by taking
the minimum latency across all supported degrees.

Selecting the replication degree: The combined curve

serves two purposes: for every VC size, it encodes both

the best achievable latency and the corresponding replication

degree (color in Fig. 17b). Hence, when Jigsaw’s optimization

runtime chooses the read-only VC’s size, it is also implicitly

choosing its replication degree. For example, if the read-

only VC in Fig. 17 is allocated 48 MB, that means the best

replication degree is 36 (i.e., it is green at 48 MB in Fig. 17b).

Nexus-J therefore adds a small step to Jigsaw’s optimiza-

tion runtime after sizing VCs that: finds each read-only

VC’s replication degree (from its combined latency curve),

creates that many VCs (one per core group), and allocates

the capacity among the created VCs (using per-group latency

curves). Jigsaw’s placement step then proceeds normally.

D. Overheads

Nexus-J adds small overheads in hardware and software.

Nexus-J adds one VC accessible from each core with an

extra entry in the VTB, adding 272 B per core (0.05% of

the local bank). Nexus-J monitors each core group for each

replication degree. With 144 cores and 4 supported replication

degrees, this gives amortized overheads of 1+1/4+1/36+
1/144 monitors per core, 4.2 KB per tile (0.8% of LLC

capacity). Software overheads are small: each reconfiguration

takes 50 M cycles, less than 0.4% of system cycles with

reconfigurations every 50 ms.

E. Related work

Like Nexus-J, Jenga [47] leverages Jigsaw’s optimization

runtime by modifying its input latency curves. However, these

systems target different system parameters: Jenga configures

the depth and configuration of the cache hierarchy, whereas

Nexus-J configures replication degree. We will consider

simultaneously optimizing hierarchy, replication, and thread

placement [7] in future work.

VI. EVALUATION

We now evaluate Nexus against state-of-the-art D-NUCAs

to demonstrate the benefits of adaptive replication in directory-

less D-NUCAs (Sec. VI-B). We show that adapting replica-

tion degree is necessary to fully exploit the latency-capacity

tradeoff, and that simply extending R-NUCA and Jigsaw to

replicate read-only data with fixed degrees does not yield

the same benefits as Nexus (Sec. VI-C).

A. Methodology

Modeled system: We perform microarchitectural, execution-

driven simulation using zsim [42], and model a 144-core tiled

CMP with a 12×12 mesh network. Each tile has one lean

2-way OOO core similar to Silvermont [28] with private L1

caches and an LLC bank. We configure the system to match

commercial many-core chips (e.g., Knights Landing [45] and

TILE-Gx [46]) by using a mesh NoC and a shallow cache

hierarchy. Table II details the system’s configuration, which

TABLE II: CONFIGURATION OF THE SIMULATED 144-CORE CMP.

Cores

144 cores, x86-64 ISA, 2 GHz, Silvermont-like OOO [28]:
8B-wide ifetch; 2-level bpred with 512×10-bit BHSRs +
1024×2-bit PHT, 2-way decode/issue/rename/commit,
32-entry IQ and ROB, 10-entry LQ, 16-entry SQ

L1 caches 32 KB, 8-way set-associative, split D/I, 3-cycle latency

Prefetchers
16-entry stream prefetchers modeled after and validated
against Nehalem [18, 42]

Coherence MESI, 64 B lines; sequential consistency

Global NoC
12×12 mesh, 128-bit flits and links, X-Y routing, 1-cycle
pipelined routers, 1-cycle links

L2 caches
72 MB, 512 KB bank per tile, 32-way set-associative cache,
9-cycle bank latency, LRU replacement

Main
memory

8 MCUs, 1 channel/MCU, 120 cycles zero-load latency,
19.2GB/s per channel (DDR4-2400)

is also similar to prior work in adaptive replication [19, 31].

Sec. VI-E studies the impact of different system parameters.

LLC schemes: Our baseline is a S-NUCA LLC. We compare

five schemes against the baseline. (i) R-NUCA [19], which

only replicates instructions. (ii) Jigsaw [6, 7], which never

replicates data. (iii) Locality-aware replication (LAR [31]),

a state-of-art, directory-based adaptive replication scheme.

LAR has a complete classifier (K=144) and uses the reported

best replication threshold (RT=3). LAR also uses R-NUCA’s

private/shared classification to place private data in local

banks. Finally, we evaluate (iv) Nexus-R and (v) Nexus-J as

described earlier.

Metrics: Since IPC is not a valid measure of work in

multithreaded workloads [1], to perform a fixed amount

of work we instrument each app with heartbeats that report

global progress (e.g., when each timestep or transaction

finishes) and run each app for as many heartbeats as S-

NUCA completes in 2 B cycles after the serial region.

We report speedup over S-NUCA and dynamic data move-

ment energy breakdown. To achieve statistically significant

results, we perform enough runs to achieve 95% confidence

intervals ≤1%. We use McPAT 1.1 [33] to derive the energy

numbers of chip components (cores, caches, NoC, and

memory controller) at 22 nm and Micron datasheets [35]

for memory. We report energy consumed to perform a fixed

amount of work. We focus on dynamic data movement energy,

as this is the part of system energy affected by LLC scheme

(static energy is affected by performance, which is evaluated

separately). We present total system energy in text; overall,

dynamic data movement energy consumes 25% of total S-

NUCA system energy in our workloads.

Workloads: We simulate the 60 multithreaded benchmarks

from five diverse suites, using their medium and large input

sets: scientific workloads from SPECOMP2012, PARSEC [8],

SPLASH-2 [48], and BioParallel [25], and server workloads

from TailBench [29].1 Fig. 18 plots the performance of each

workload, comparing Nexus-R’s improvement over R-NUCA

1These include all applications in these suites except the three PARSEC
pipeline-parallel benchmarks (which do not work in our infrastructure), and
choleksy and radiosity from SPLASH-2 due to short execution times.

on the y-axis and LAR’s improvement over R-NUCA on

the x-axis. Nexus-R outperforms LAR on most of these

workloads (i.e., those above the dashed line in Fig. 18).

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

LAR performance over R-NUCA

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

N
e
x
u
s
-R

 p
e
rf

o
rm

a
n
c
e

 o
v
e
r

R
-N

U
C

A

N
exus-R

 better

than LAR
SPECOMP12

PARSEC

SPLASH2

BioParallel

TailBench

Figure 18: Performance of Nexus-R and LAR over R-NUCA on the 60
apps in SPECOMP12, PARSEC, SPLASH2, BioParallel, and TailBench.

We focus our evaluation on the 20 replication-sensitive

workloads from this full set, i.e., those workloads with at

least 5% difference in performance between Nexus, LAR,

and R-NUCA (shown outside the box in Fig. 18). Table III

details these 20 applications and their input sets.

TABLE III: REPLICATION-SENSITIVE WORKLOADS AND INPUTS USED.

Suite Benchmark and input

SPECOMP2012 botsspar, kdtree (ref/train)

bt331, imagick (train)

PARSEC canneal, freqmine, swaptions (native/simlarge)

streamcluster (simlarge)

SPLASH2 barnes (1M particle), raytrace (balls4)

BioParallel svm (253/30 cases)

SpecJBB (TPC-C 144 warehouses)

TailBench Shore (TPC-C 10 warehouses)

Masstree (mycsb-a)

B. Nexus outperforms prior D-NUCAs

Fig. 19 shows the performance and dynamic data move-

ment energy of the different LLC organizations. We nor-

malize all results to S-NUCA. Nexus-R and Nexus-J both

outperform prior schemes, showing the wide applicability of

adaptive replication in directory-less D-NUCAs.

We classify applications into four categories: those that

prefer (i) high, (ii) medium, and (iii) low replication degrees,

and those where (iv) LAR is better than Nexus-R.

For the first group (7 out of 20 workloads), both Nexus

and LAR outperform R-NUCA and Jigsaw (Fig. 19a). These

workloads have small read-only data footprints that fit in the

local bank. Therefore, full replication is best. Both Nexus and

LAR achieve this, improving performance of applications by

eliminating on-chip network traversals (Fig. 19b).

However, when the read-only data footprint becomes larger,

as in the second group (4 out of 20 workloads), replicating

in the local bank is suboptimal. In these workloads (e.g.,

btspa-r and raytrace), the read-only data does not fit

in the local bank, but fits in a cluster of banks. LAR,

which selects between replicating in the local bank or not,

causes more off-chip misses than Nexus. In svm-s, these

extra misses make LAR slower than even S-NUCA. Nexus

significantly outperforms LAR by choosing intermediate

degrees and letting cores share replicas. Nexus thus finds the

best latency-capacity tradeoff for these applications.

When the footprint is even larger, as in the third group (6

out of 20 workloads), LAR performs worse than S-NUCA

because excessive replication adds unnecessary misses, while

Nexus chooses not to replicate and avoids these misses.

For the last group (3 out of 20 workloads), LAR performs

better than Nexus-R. barnes has infrequently written data,

and Nexus’s one-way classification cannot capture the read-

only phases between writes. We study this benchmark in

detail later (Sec. VI-E). For freqmine, when using 144

threads, its performance is determined by a single, dominant

thread that accesses shared read-write data. Since R-NUCA

and Nexus-R treat all threads equally, they cannot improve the

performance of this thread. In contrast, Jigsaw and Nexus-J

outperform LAR by placing shared read-write data closer to

this thread, and Nexus-J outperforms Jigsaw by distinguishing

between read-only and read-write data.

Overall, for replication-sensitive workloads, Nexus-J/R

significantly outperform LAR, by 20%/16% on average and

by up to 2.8× (svm-l). Nexus-J/R improve performance

over S-NUCA by 23/18% on average, while prior work

outperforms S-NUCA by less than 10%. Nexus also achieves

the greatest savings in dynamic data movement energy (40%)

and full system energy (15%). Over all 60 workloads, Nexus-

J/R improve performance over S-NUCA by 11/9% on average,

while others achieve less than 5%.

The original LAR paper did not find these pathologies

because it did not evaluate applications with large read-only

data footprints, such as svm and canneal. To correct these

pathologies, we sweep the replication threshold (RT) at 1,

3, 8, 20, 50, 150, 500, and 2000, and use the threshold

that achieves the highest gmean speedup for our workloads,

RT = 150. With this threshold, LAR achieves only 10%

speedup over S-NUCA, and Nexus-J/R still outperform LAR

by 12%/7% on average.

Finally, Nexus-R outperforms Nexus-J in some workloads,

such as raytrace and botsspar-r. This is due to rotational

interleaving, which further reduces the access latency in R-

NUCA. With more extensive changes to Jigsaw, a similar

technique could provide similar benefits in Nexus-J.

C. Adaptive replication is essential

To show that Nexus’s benefits come from adapting replica-

tion degree, we compare Nexus-R and -J to their unmodified

baseline schemes (i.e., R-NUCA and Jigsaw) and against

themselves replicating read-only data but at fixed degrees.

Fig. 20 shows the performance improvement over S-NUCA.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

e
e

d
u

p
 v

s
.

S
-N

U
C

A

0
.4

1
.9

Shore
btspa-t

kdtree-t
strm

-cls
swpts-l

swpts-n
imgck-t JBB

btspa-r
raytrace

svm-s
svm-l

cannl-l
cannl-n

kdtree-r
mTree

bt331-t
barnes

freqm-l
freqm-n

1. High replication degree 2. Medium repl. degree 3. Low replication degree 4. LAR > Nexus-R

R-NUCA

Jigsaw

Locality-aware

Nexus-R

Nexus-J

1.00

1.05

1.10

1.15

1.20

1.25

gmean
sensitive

gmean
all 60

(a) Speedup.

0.0

0.5

1.0

1.5

2.0

D
y
n

a
m

ic
 d

a
ta

 m
o

v
e

m
e

n
t

e
n

e
rg

y
 v

s
.

S
-N

U
C

A

Shore btspa-t kdtree-tstrm-clsswpts-l swpts-nimgck-t JBB btspa-rraytrace svm-s svm-l cannl-l cannl-nkdtree-r mTree bt331-t barnes freqm-l freqm-n

From the left: SNUCA, R-NUCA, Jigsaw, Locality-aware, Nexus-R, Nexus-J

1. High replication degree 2. Medium repl. degree 3. Low replication degree 4. LAR > Nexus-R

Net SRAM Off-chip DRAM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

mean
sensitive

mean
all 60

(b) Dynamic data movement energy breakdown.

Figure 19: Simulation results for server and HPC applications on several NUCA schemes and Nexus.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

e
e

d
u

p
 v

s
.

S
-N

U
C

A

Shore
btspa-t

kdtree-t
strm

-cls
swpts-l

swpts-n
imgck-t JBB

btspa-r
raytrace

svm-s
svm-l

cannl-l
cannl-n

kdtree-r
mTree

bt331-t
barnes

freqm-l
freqm-n

1. High replication degree 2. Medium repl. degree 3. Low replication degree 4. LAR > Nexus-R

Original Jigsaw

Degree 1

Degree 9

Degree 36

Degree 144

Nexus-J

0.95

1.00

1.05

1.10

1.15

1.20

1.25

gmean

(a) Nexus vs. Jigsaw.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
p

e
e

d
u

p
 v

s
.

S
-N

U
C

A

Shore
btspa-t

kdtree-t
strm

-cls
swpts-l

swpts-n
imgck-t JBB

btspa-r
raytrace

svm-s
svm-l

cannl-l
cannl-n

kdtree-r
mTree

bt331-t
barnes

freqm-l
freqm-n

1. High replication degree 2. Medium repl. degree 3. Low replication degree 4. LAR > Nexus-R

Original R-NUCA

Degree 1

Degree 9

Degree 36

Degree 144

Nexus-R

0.90

0.95

1.00

1.05

1.10

1.15

1.20

gmean

(b) Nexus vs. R-NUCA.

Figure 20: Performance of Nexus-J/R vs. R-NUCA and Jigsaw using fixed replication degrees.

As we saw in Sec. III, applications prefer widely different

replication degrees. shore, streamcluster, kdtree-t, and

botsspar-s have a small read-only footprint and little

cache pressure from private or read-write data, so replication

degree 144 (full replication) is best. For JBB, botsspar-l,

raytrace, the best replication degree is 36 to balance

on-chip and off-chip latencies. And for svm-s, the best

replication degree is 9. Nexus-J/R find the right replication

degree on all applications, matching the performance of the

best static choice.

These results show that Nexus’s improvements come from

adapting replication degree, not other changes. Any fixed

replication degree gives little to no average improvement

over the baseline. Compare the gmean bars on the right of

Fig. 20: the leftmost bar shows the baseline, the next four

bars show Nexus with fixed degree, and the rightmost bar

shows Nexus with adaptive degree. Overall, no single fixed

replication degree works well, whereas Nexus-J/R improve

gmean performance over the best fixed degree by 11%.

0 5 10 15 20

Workload

0.8

0.9

1.0

1.1

1.2

1.3

1.4

W
S

p
e

e
d

u
p

 v
s
.

S
-N

U
C

A

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S
p

e
e

d
u

p
 v

s
.

S
-N

U
C

A

1
.6

0
.6

1
.9

1
.8

1. Replication-sensitive mix

btspa-r
imagick

kdtree-t
raytrace

Mean

of 4

2. Capacity-sensitive mix

nab bt
btspa-r

cannl-l Mean

of 4

3. Mix sensitive to both

svm-s
bwaves

btspa-r
water

Mean

of 4

R-NUCA Jigsaw Locality-aware Nexus-R Nexus-J

Figure 21: Performance on multi-programed workloads. Left: Distribution of weighted speedups over 20 mixes. Right: Per-application speedups of 3 mixes.

D. Nexus-J outperforms other schemes in multi-programmed

workloads

Next, we evaluate Nexus with 20 multi-programmed

workloads. Each workload is a mix of four 36-thread apps

that are randomly selected from our benchmark suites.

Applications are clustered in quadrants of the 144-core chip.

We use weighted speedup as the performance metric, which

accounts for throughput and fairness [39, 44].

The left of Fig. 21 shows the distribution of weighted

speedups over S-NUCA for the schemes we consider. Each

line shows the performance over all 20 mixes for a single

scheme, sorted from worst to best along the x-axis. Overall,

gmean weighted speedups are 26% for Nexus-J, 21% for

Jigsaw, 20% for Nexus-R, 5% for R-NUCA, and 1% for

LAR. Hence, even without replication, Jigsaw outperforms

LAR and Nexus-R, which perform adaptive replication.

To better understand these results, Fig. 21 presents 3

representative mixes and shows the performance gain for

each program in the mix. In the first mix, where most apps

benefit from replication, Nexus-J and -R significantly improve

performance by replicating read-only data. Jigsaw improves

performance by placing shared read-write data in the middle

of each quadrant instead of spreading it across the chip. LAR

helps some apps, but not all, because it does not consider how

apps interfere with each other in the LLC. R-NUCA gets no

improvement since it spreads all shared data (including read-

only) across the chip, like S-NUCA. For this mix, Nexus-J

and -R improve weighted speedup by 40%/43%, while Jigsaw,

LAR, and R-NUCA only improve it by 29%, 17%, and 5%.

In the second mix, where apps are less sensitive to replica-

tion, Nexus-J and Jigsaw improve performance the most by

carefully allocating capacity. Nexus-R also improves perfor-

mance, but only botsspar-r benefits from replication. LAR

also improves botsspar-r, but by sacrificing canneal-l’s

performance. R-NUCA again performs similarly to S-NUCA.

For this mix, Nexus-J and Jigsaw improve weighted speedup

by 22% and 21%, but Nexus-R and R-NUCA only improve

it by 15% and 6%, and LAR hurts it by 2%.

In the third mix, which contains both replication-sensitive

and capacity-sensitive apps, Nexus-R improves performance

by 21% through adaptive replication, Jigsaw by 23% through

careful capacity allocation, and Nexus-J by 30%—the highest

speedup—by combining both techniques.

In summary, when several apps run concurrently, they

compete for LLC capacity, complicating the tradeoffs in

adaptive replication. This makes Nexus-J attractive, since

its software runtime carefully weighs the latency-capacity

tradeoffs when deciding how to allocate capacity and how

much to replicate.

E. Nexus sensitivity studies

Sensitivity to system size: We evaluate Nexus on systems

with different core counts and network topologies. Fig. 22a

shows the performance improvement of NUCA schemes

at different system sizes. Nexus’s benefits increase as the

diameter of the NoC increases, from gmean 12% vs. S-

NUCA for an 8×8 mesh to 17% for a 12×12 mesh. Also,

we evaluate Nexus on a latency-optimized 12× 12 mesh

with 2-cycle express links that connect tiles four hops away.

Nexus-J/R still improve gmean performance by 18%/14%.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

G
m

e
a
n
 s

p
e
e
d
u
p

8x8 10x10 12x12 12x12
Exp. links

(a) Different system sizes.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

G
m

e
a
n
 s

p
e
e
d
u
p

256KB
bank

512KB
bank

1MB
bank

With
priv. L2

(b) Different cache hierarchies.

Figure 22: Sensitivity study of performance of NUCA schemes with various
system parameters.

Sensitivity to different cache hierarchies: Fig. 22b shows

the performance of different schemes using LLC banks with

half (128 KB) or twice (1 MB) their original capacity, and

when using a 128KB, 6-cycle private L2 in each tile.

Smaller LLC banks make capacity scarcer, so replication is

less beneficial (Sec. III). In this case, Nexus-R and Nexus-J

replicate less, but still improve performance by 12% and 20%.

Conversely, larger banks make replication more beneficial.

LAR, Nexus-R, and Nexus-J improve performance further

with 1MB banks, by 14%, 20%, and 26%.

With private L2s, a small amount of read-only data is

replicated locally. Therefore, the performance advantage of

replication is reduced. With private L2s, Nexus-R/J improves

performance by 9/6% over R-NUCA and Jigsaw, and by

15% over S-NUCA. LAR performs worse since private L2s

capture most of the benefit of replication in the local bank.

In summary, these experiments show that Nexus offers

consistent benefits across different system parameters.

Dynamic reclassification for barnes: In one benchmark,

barnes from SPLASH-2, shared data is read without being

written for long phases, but is written infrequently. Fig. 23

shows the sharing behavior (thread-private, shared read-only,

shared read-write) of different pages in barnes over time.

More than 50% of the pages are intermittently read-write—

these pages are written in some phases, but read-only in

others. LAR performs well in this benchmark, with 40%

improvement over S-NUCA, while Nexus only achieves 8%

improvement due to its one-way classification.

0.0 0.2 0.4 0.6 0.8 1.0

Cycles (Billions)

0

10

20

30

40

50

60

#
 o

f
p

a
g

e
s
 (

K
 p

a
g

e
s
) Shared Read-only Shared Read-write Private

Figure 23: Trace showing page usage in barnes over time. Many pages
are temporarily read-write but read-only otherwise.

This issue can be addressed by dynamically reclassifying

pages [17, 41]. Nexus with an idealized page reclassification

technique [41], which makes page classification periodically

“decay”, increases Nexus’s performance improvement on

barnes to 37%. However, this pathology occurs in just

one out of sixty evaluated workloads.

Uncoordinated Nexus-R often performs poorly: In Nexus-

R, all threads in a process agree upon a single replication

degree. To study the impact of this coordination, we evaluate

Nexus-R without this support: cores make local decisions

based on local latency counters. Performance degrades on

five apps (svm-l, canneal-l, kdtree-t, raytrace, and

swaptions), and gmean performance decreases by 7%.

VII. CONCLUSION AND FUTURE WORK

Data replication significantly improves performance and

efficiency in systems with distributed caches. Unlike prior

adaptive replication techniques, Nexus adapts how much to

replicate data, not which data to replicate. To achieve this,

Nexus builds on recent, directory-less D-NUCAs that allow

cores to share replicas across the chip. We have presented

two implementations of this idea, Nexus-R and Nexus-J, each

of which add small overheads and significantly outperform

the state-of-the-art adaptive replication scheme.

One question left unresolved is how to combine Nexus

with selective replication, i.e., how to choose both how

much and which data to replicate. Currently, Nexus uses a

single replication degree for all read-only data, but adapting

replication degree to different data could be more beneficial.

We believe this is an interesting and important direction for

future work in distributed caches.

ACKNOWLEDGMENTS

We thank Christina Delimitrou, Nosayba El-Sayed, Joel

Emer, Yee Ling Gan, Mark Jeffrey, Harshad Kasture, Anurag

Mukkara, Hyun Ryong Lee, Suvinay Subramanian, Victor

Ying, Guowei Zhang, and the anonymous reviewers for their

helpful feedback on prior versions of this manuscript. This

work was supported in part by NSF grants CCF-1318384

and CAREER-1452994, a Samsung research grant, and a

grant from the Qatar Computing Research Institute.

APPENDIX: A SIMPLE ANALYTICAL LATENCY MODEL

FOR DATA REPLICATION

Fig. 3 uses a simple analytical cache model to calculate

the average access latency of different replication schemes:

Latency = Hit latency+(1−Hit ratio)×Miss penalty

We use ℓ to denote latencies, c to denote cache capacity,

and s for the application’s working set size. We assume an

optimal replacement policy, i.e., the hit ratio is:

h(c,s) = min{c/s,1}

Therefore, the latency for full replication is:

LatencyFull = ℓBank +(1−h(cBank,s))× ℓMemory

For no replication, it is similar, but with different parameters:

LatencyNone = ℓLLC +(1−h(cLLC,s))× ℓMemory

Selective replication checks the local bank first, then the

whole LLC, and finally memory if it misses in both. This

policy essentially combines the previous two and creates

a two-level cache hierarchy. We optimistically assume that

the full LLC capacity is available to both replicated and

non-replicated data:

LatencySelective = ℓBank +(1−h(cBank,s))× ℓLLC

+(1−h(cLLC,s))× ℓMemory

Finally, Nexus uses the optimal replication degree

d = cLLC/s and replicates data d times across the chip.

Each core accesses a replica in the closest cluster, which

has size cLLC/d. The latency of this cluster consists of the

bank latency plus the average network latency, which is

determined by the number of banks in the cluster and the

network topology. On a mesh, the network latency grows

with the square root of the size of the cluster. Also, Nexus’s

hit ratio equals that of a cache without replication, since

Nexus will not replicate uniformly accessed data when it

does not fit in the LLC. Nexus’s latency is:

LatencyNexus = ℓCluster(d)+(1−h(cLLC,s))× ℓMemory

REFERENCES

[1] A. Alameldeen and D. Wood, “IPC considered harmful for multipro-
cessor workloads,” IEEE Micro, vol. 26, no. 4, 2006.

[2] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage
capacity allocation and sharing within large caches,” in Proc. HPCA-15,
2009.

[3] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of SPLASH-2 and PARSEC,” in Proc. IISWC, 2009.

[4] B. Beckmann, M. Marty, and D. Wood, “ASR: Adaptive selective
replication for CMP caches,” in Proc. MICRO-39, 2006.

[5] B. Beckmann and D. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proc. ASPLOS-XI, 2004.

[6] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in Proc. PACT-22, 2013.

[7] N. Beckmann, P.-A. Tsai, and D. Sanchez, “Scaling distributed cache
hierarchies through computation and data co-scheduling,” in Proc.

HPCA-21, 2015.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. PACT-

17, 2008.

[9] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,”
in Proc. ISCA-33, 2006.

[10] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in Proc.

HPCA-15, 2009.

[11] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replication,
communication, and capacity allocation in CMPs,” in Proc. ISCA-32,
2005.

[12] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-level page allocation,” in Proc. MICRO-39, 2006.

[13] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “RadixVM:
Scalable address spaces for multithreaded applications,” in Proc.

EuroSys, 2013.

[14] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato,
“Increasing the effectiveness of directory caches by deactivating
coherence for private memory blocks,” in Proc. ISCA-38, 2011.

[15] W. J. Dally, “GPU computing: To exascale and beyond,” SC10 Keynote,
2010.

[16] H. Dybdahl and P. Stenstrom, “An adaptive shared/private NUCA
cache partitioning scheme for chip multiprocessors,” in Proc. HPCA-

13, 2007.

[17] A. Esteve, A. Ros, A. Robles, M. E. Gómez, and J. Duato, “TokenTLB:
A token-based page classification approach,” in Proc. ICS’16, 2016.

[18] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2,
1992.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in Proc. ISCA-36, 2009.

[20] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
dark silicon in servers,” IEEE Micro, vol. 31, no. 4, 2011.

[21] E. Herrero, J. González, and R. Canal, “Elastic cooperative caching:
An autonomous dynamically adaptive memory hierarchy for chip
multiprocessors,” in Proc. ISCA-37, 2010.

[22] H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coherence
protocol optimization for both private and shared data,” in Proc. PACT-

20, 2011.

[23] J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang, D. Burger,
and S. Keckler, “A NUCA substrate for flexible CMP cache sharing,”
IEEE Trans. Par. Dist. Sys., vol. 18, no. 8, 2007.

[24] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer, “Adaptive insertion policies for managing shared caches,” in
Proc. PACT-17, 2008.

[25] A. Jaleel, M. Mattina, and B. Jacob, “Last level cache (LLC)
performance of data mining workloads on a CMP,” in Proc. HPCA-12,
2006.

[26] L. Jin and S. Cho, “SOS: A software-oriented distributed shared cache
management approach for chip multiprocessors,” in Proc. PACT-18,
2009.

[27] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proc. ISCA-42, 2015.

[28] D. Kanter, “Silvermont, Intel’s low power architecture,” Real World

Tech, 2013.

[29] H. Kasture and D. Sanchez, “TailBench: A benchmark suite and
evaluation methodology for latency-critical applications,” in Proc.

IISWC, 2016.

[30] C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in Proc. ASPLOS-

X, 2002.

[31] G. Kurian, S. Devadas, and O. Khan, “Locality-aware data replication
in the last-level cache,” in Proc. HPCA-20, 2014.

[32] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and
shrinking private caches,” in Proc. HPCA-17, 2011.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proc. MICRO-42, 2009.

[34] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost
adaptive non-uniform cache architecture,” in Proc. HPCA-16, 2010.

[35] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.

[36] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving
dynamic cache management with static data classification,” in Proc.

ASPLOS-XXI, 2016.

[37] M. Oskin and G. H. Loh, “A software-managed approach to die-stacked
DRAM,” in Proc. PACT-24, 2015.

[38] M. Qureshi, “Adaptive spill-receive for robust high-performance
caching in CMPs,” in Proc. HPCA-15, 2009.

[39] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. MICRO-39, 2006.

[40] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in Proc.

ISCA-34, 2007.

[41] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato, “Temporal-
aware mechanism to detect private data in chip multiprocessors,” in
Proc. ICPP-42, 2013.

[42] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems,” in Proc. ISCA-40,
2013.

[43] A. Seznec, “Bank-interleaved cache or memory indexing does not
require euclidean division,” in WDDD-11, 2015.

[44] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreading processor,” in Proc. ASPLOS-IX, 2000.

[45] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights
Landing: Second-generation Intel Xeon Phi product,” IEEE Micro,
vol. 36, no. 2, 2016.

[46] Tilera, “TILE-Gx 3000 Series Overview,” Tech. Rep., 2011.

[47] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined
cache hierarchies,” in Proc. ISCA-44, 2017.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc. ISCA-22, 1995.

[49] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in Proc. ISCA-

32, 2005.

