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Executive summary

 Heterogeneous caches are traditionally organized as a rigid hierarchy

 Easy to program but introduce expensive overheads when hierarchy is not helpful

 Jenga builds application-specific cache hierarchies on the fly

 Key contribution: New algorithms to find near-optimal hierarchies

 Arbitrary application behaviors & changing resource constraints 

 Full system optimization at 36 cores in <1 ms

 Jenga improves EDP by up to 85% vs. state-of-the-art
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Even the best rigid hierarchy is a bad compromise!

(See paper for details)
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 Hit/miss predictors, prefetchers

 Hide latency with speculative accesses 

 They must still check all levels for correctness!
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Multi-level hierarchies are much more complex

 Many intertwined factors

 Best VL1 size depends on VL2 size

 Best VL2 size depends on VL1 size

 Should we have VL2? (Depends on total size)

 Jenga encodes these tradeoffs in a single curve

 Can reuse prior allocation algorithms
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How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Best overall hierarchy

at every size

Two-level hierarchies form

a latency surface!

Curve lets us optimize

multi-level hierarchies!
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 Hardware overheads

 VHT requires ∼2.4 KB/tile

 Monitors are 8 KB x 2/tile

 In total, Jenga adds ∼20 KB per tile, 4% of the SRAM banks

 Similar to Jigsaw

 Software overheads

 0.4% of system cycles at 36 tiles

 Runs concurrently with applications; only needs to pause cores to update VHTs

 Trivial to parallelize
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See paper for …

 Hardware support for 

 Fast reconfiguration

 Page reclassification

 Efficient implementation of hierarchy allocation

 OS integration
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 Modeled system

 36 cores on 6x6 mesh

 18MB SRAM

 1GB Stacked DRAM

 Workloads

 36 copies of same app (SPECrate)

 Random 36 SPECCPU apps mixes

 36-threaded SPECOMP apps

 Compared 5 schemes

SRAM DRAM

S-NUCA Rigid L3 -

Alloy Rigid L3 Rigid L4

Jigsaw App-specific L3 -

JigAlloy App-specific L3 Rigid L4

Jenga App-specific Virtual Hierarchies
21
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Alloy’s benefits, but 

still a rigid hierarchy
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Jenga improves performance and energy efficiency by 

creating the right hierarchy using the best available resources!
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Jenga VHs
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0.5MB +

16MB

1MB +

8MB

SRAM+DRAM VL1

DRAM VL2

2.5MB

SRAM+

DRAM VL1

8MB

SRAM+

DRAM VL1

>50MB

DRAM VL1 or

No caching

App with two-level working set App with flat working set
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Jenga works for random multi-program mixes

Jenga consistently outperforms the other 

schemes for multi-program mixes

2.6X over S-NUCA

20% over JigAlloy

1.7X over S-NUCA

10% over JigAlloy
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See paper for more results

 Full result for SPECCPU-rate

 Multithreaded apps

 Sensitivity study for Jenga’s software techniques

 2.5D DRAM architectures

 Jigsaw SRAM L3 + Jigsaw DRAM L4

 And more
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Thanks! Questions?

 Rigid, multi-level cache hierarchies are ill-suited to many applications

 They cause significant overhead when they are not helpful

 We propose Jenga, a software-defined, reconfigurable cache hierarchy 

 Adopts application-specific organization on-the-fly

 Uses new software algorithm to find near-optimal hierarchy efficiently

 Jenga improves both performance and energy efficiency, by up to 85% in 

EDP, over a combination of state-of-art techniques
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Thank you for your attention!

Questions?

Jenga: Software-Defined Cache Hierarchies


