
Jenga: Software-Defined

Cache Hierarchies

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez

Executive summary

 Heterogeneous caches are traditionally organized as a rigid hierarchy

 Easy to program but introduce expensive overheads when hierarchy is not helpful

 Jenga builds application-specific cache hierarchies on the fly

 Key contribution: New algorithms to find near-optimal hierarchies

 Arbitrary application behaviors & changing resource constraints

 Full system optimization at 36 cores in <1 ms

 Jenga improves EDP by up to 85% vs. state-of-the-art

2

Deep, rigid hierarchies are running out of steam

3

Deep, rigid hierarchies are running out of steam

Main

Memory
L1

L2

~1ns ~10ns ~100ns

Systems had few cache levels with widely different sizes and latencies

Past

3

Deep, rigid hierarchies are running out of steam

Main

Memory
L1

L2

~1ns ~10ns ~100ns

Systems had few cache levels with widely different sizes and latencies

Past

L1 L2

~1ns ~5ns

Now

3

Deep, rigid hierarchies are running out of steam

Main

Memory
L1

L2

~1ns ~10ns ~100ns

Systems had few cache levels with widely different sizes and latencies

Past

L1 L2

~1ns ~5ns

Now

~25ns

Distributed SRAM L3

Core

Private

L1 & L2

SRAM

Cache Bank

3

Deep, rigid hierarchies are running out of steam

Main

Memory
L1

L2

~1ns ~10ns ~100ns

DRAM

bank

DRAM

bank

DRAM

bank

DRAM

bank

Distributed DRAM L4

~50ns

Systems had few cache levels with widely different sizes and latencies

Past

L1 L2

~1ns ~5ns

Now

~25ns

Distributed SRAM L3

Core

Private

L1 & L2

SRAM

Cache Bank

3

Deep, rigid hierarchies are running out of steam

Main

Memory

Main

Memory
L1

L2

~1ns ~10ns ~100ns

DRAM

bank

DRAM

bank

DRAM

bank

DRAM

bank

Distributed DRAM L4

~50ns
~100ns

Systems had few cache levels with widely different sizes and latencies

Past

L1 L2

~1ns ~5ns

Now

~25ns

Distributed SRAM L3

Core

Private

L1 & L2

SRAM

Cache Bank

3

Deep, rigid hierarchies are running out of steam

Main

Memory

Main

Memory
L1

L2

~1ns ~10ns ~100ns

DRAM

bank

DRAM

bank

DRAM

bank

DRAM

bank

Distributed DRAM L4

~50ns
~100ns

Systems had few cache levels with widely different sizes and latencies

Higher overheads due to closer sizes and latencies across hierarchy levels

Past

L1 L2

~1ns ~5ns

Now

~25ns

Distributed SRAM L3

Core

Private

L1 & L2

SRAM

Cache Bank

3

Rigid hierarchies must cater to the conflicting needs of many applications

4

App 1: Scan through a 256MB array repeatedly

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2

4

App 1: Scan through a 256MB array repeatedly

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

App 1: Scan through a 256MB array repeatedly

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency = ×

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

0ns ~50ns~5ns + + = ~55ns (30% lower)Hit latency =

×

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

0ns ~50ns~5ns + + = ~55ns (30% lower)Hit latency =

×

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

0ns ~50ns~5ns + + = ~55ns (30% lower)Hit latency =

×

×

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

0ns ~50ns~5ns + + = ~55ns (30% lower)Hit latency =

0ns ~40ns~5ns + + = ~45ns (45% lower)Hit latency =

×

×

Rigid hierarchies must cater to the conflicting needs of many applications

SRAM L3 DRAM L4

Main

Memory

Private

L1 & L2
App 1

4

0% hit rate 0% hit rate 100% hit rate

Array data

App 1: Scan through a 256MB array repeatedly

~25ns ~50ns~5ns + + = ~80nsHit latency =

0ns ~50ns~5ns + + = ~55ns (30% lower)Hit latency =

0ns ~40ns~5ns + + = ~45ns (45% lower)Hit latency =

×

×

Even the best rigid hierarchy is a bad compromise!

(See paper for details)

Jenga: Software-defined cache hierarchies

5

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

5

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

5

App 1: Scan through a 256MB array

256MB

cache

Main

Memory

Private

L1 & L2
App 1

Ideal hierarchy

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

5

App 1: Scan through a 256MB array

256MB

cache

Main

Memory

Private

L1 & L2
App 1

Ideal hierarchy

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

5

App 1: Scan through a 256MB array

256MB

cache

Main

Memory

Private

L1 & L2
App 1

Ideal hierarchy

App 2: Lookup a 5MB hashmap

5MB

cache
Private

L1 & L2
App 2

Ideal hierarchy

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

5

App 1: Scan through a 256MB array

256MB

cache

Main

Memory

Private

L1 & L2
App 1

Ideal hierarchy

App 2: Lookup a 5MB hashmap

5MB

cache
Private

L1 & L2
App 2

Ideal hierarchy

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

6

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

6

App 3: Scan through two arrays

(1MB and 256MB)
256MB

cache
Private

L1 & L2
App 3

1MB

cache

Jenga manages distributed and heterogeneous banks as a single resource pool

and builds virtual hierarchies tailored to each application in the system.

SRAM bank
DRAM bank

Jenga: Software-defined cache hierarchies

6

App 3: Scan through two arrays

(1MB and 256MB)
256MB

cache
Private

L1 & L2
App 3

1MB

cache

Prior work to mitigate the cost of rigid hierarchies

7

Prior work to mitigate the cost of rigid hierarchies

 Bypass levels to avoid cache pollutions

 Do not install lines at specific levels

 Give lines low priority in replacement policy

L3
L4Private

L1 & L2

7

Prior work to mitigate the cost of rigid hierarchies

 Bypass levels to avoid cache pollutions

 Do not install lines at specific levels

 Give lines low priority in replacement policy

 Speculatively access up the hierarchy

 Hit/miss predictors, prefetchers

 Hide latency with speculative accesses
L3 L4Private

L1 & L2

L3
L4Private

L1 & L2

7

Prior work to mitigate the cost of rigid hierarchies

 Bypass levels to avoid cache pollutions

 Do not install lines at specific levels

 Give lines low priority in replacement policy

 Speculatively access up the hierarchy

 Hit/miss predictors, prefetchers

 Hide latency with speculative accesses

 They must still check all levels for correctness!

 Waste energy and bandwidth

L3 L4Private

L1 & L2

L3
L4Private

L1 & L2

7

Prior work to mitigate the cost of rigid hierarchies

 Bypass levels to avoid cache pollutions

 Do not install lines at specific levels

 Give lines low priority in replacement policy

 Speculatively access up the hierarchy

 Hit/miss predictors, prefetchers

 Hide latency with speculative accesses

 They must still check all levels for correctness!

 Waste energy and bandwidth

L3 L4Private

L1 & L2

It’s better to build the right hierarchy and

avoid the root cause: unnecessary accesses to

unwanted cache levels

L3
L4Private

L1 & L2

7

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Time

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Read hardware

monitors

Time

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Read hardware

monitors

Optimize

hierarchies

Time

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Read hardware

monitors

Optimize

hierarchies

Time

Update

hierarchies

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Read hardware

monitors

Optimize

hierarchies

Time

Update

hierarchies

100ms

8

Jenga = flexible hardware + smart software
H

a
rd

w
a
re

S
o
ft

w
a
re

Read hardware

monitors

Optimize

hierarchies

Time

Update

hierarchies

Optimize

hierarchies

100ms

8

Jenga hardware: supporting virtual hierarchies (VHs)

 Cores consult virtual hierarchy table (VHT) to find the access path

 Similar to Jigsaw [PACT’13, HPCA’15], but it supports two levels

9

Jenga hardware: supporting virtual hierarchies (VHs)

 Cores consult virtual hierarchy table (VHT) to find the access path

 Similar to Jigsaw [PACT’13, HPCA’15], but it supports two levels

SRAM Bank

Private $

NoC

Router

Core VHT
TLB

Addr

VH id

DRAM bank

9

Jenga hardware: supporting virtual hierarchies (VHs)

 Cores consult virtual hierarchy table (VHT) to find the access path

 Similar to Jigsaw [PACT’13, HPCA’15], but it supports two levels

SRAM Bank

Private $

NoC

Router

Core VHT
TLB

Addr

VH id

DRAM bank
Two-level using both

SRAM and DRAM

9

Jenga hardware: supporting virtual hierarchies (VHs)

 Cores consult virtual hierarchy table (VHT) to find the access path

 Similar to Jigsaw [PACT’13, HPCA’15], but it supports two levels

SRAM Bank

Private $

NoC

Router

Core VHT
TLB

Addr

VH id

DRAM bank
Two-level using both

SRAM and DRAM

9

Accessing a two-level virtual hierarchy

Tile 10
Private

Caches
Core 1VHT

DRAM

cache

bank

Tile

Access path: SRAM bank  DRAM bank  Mem

10

Accessing a two-level virtual hierarchy

Tile 10

Virtual L1

(VL1)

1

SRAM (bank 10)

Private

Caches
Core 1VHT

Core miss  VL1 bank

DRAM

cache

bank
1

Tile

Access path: SRAM bank  DRAM bank  Mem

10

Accessing a two-level virtual hierarchy

Tile 10

Virtual L1

(VL1)

Virtual L2

(VL2)

1

2

SRAM (bank 10)

Private

Caches
Core 1VHT

DRAM (bank 38)

Core miss  VL1 bank

VL1 miss  VL2 bank

DRAM

cache

bank
1

2

Tile

Access path: SRAM bank  DRAM bank  Mem

10

Accessing a two-level virtual hierarchy

Tile 10

Virtual L1

(VL1)

Virtual L2

(VL2)

1

2

3

SRAM (bank 10)

Private

Caches
Core 1VHT

DRAM (bank 38)

Core miss  VL1 bank

VL1 miss  VL2 bank

VL2 hit, serve line

DRAM

cache

bank
1

2

3

Tile

Access path: SRAM bank  DRAM bank  Mem

10

Accessing an single-level VH using SRAM + DRAM

 With VHT, software can group any combinations of banks to form a VH

VHT

11

Private

Caches
Core

Main

Memory

Accessing an single-level VH using SRAM + DRAM

 With VHT, software can group any combinations of banks to form a VH

VHT
Single-level using both

SRAM and DRAM

11

Private

Caches
Core

Main

Memory

Accessing an single-level VH using SRAM + DRAM

 With VHT, software can group any combinations of banks to form a VH

VHT
Single-level using both

SRAM and DRAM

11

Private

Caches
Core

Main

Memory

Addr X

Accessing an single-level VH using SRAM + DRAM

 With VHT, software can group any combinations of banks to form a VH

VHT
Single-level using both

SRAM and DRAM

11

Private

Caches
Core

Main

Memory

Addr Y

Addr X

Accessing an single-level VH using SRAM + DRAM

 With VHT, software can group any combinations of banks to form a VH

VHT
Single-level using both

SRAM and DRAM

11

Private

Caches
Core

Main

Memory

Addr Y

Logically equivalent to…

Private

Caches
Core

DRAM

SRAM
SRAM
SRAM

Addr X

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Set VHTs

Hardware

Monitors

Reconfigure

Virtual

Hierarchies

Hardware Software

12

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Set VHTs

Hardware

Monitors

Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

12

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Set VHTs

Hardware

Monitors

Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

Virtual

Hierarchy

Allocation

12

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Set VHTs

Hardware

Monitors

Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

Virtual

Hierarchy

Allocation

VL1
VL2

VH sizes & levels

12

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Set VHTs

Hardware

Monitors

Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

Bandwidth-Aware

Placement

Virtual

Hierarchy

Allocation

VL1
VL2

VH sizes & levels

12

Jenga software: finding near-optimal hierarchies

 Periodically, Jenga reconfigures VHs to minimize data movement

Final allocation

Set VHTs

Hardware

Monitors

Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

Bandwidth-Aware

Placement

Virtual

Hierarchy

Allocation

VL1
VL2

VH sizes & levels

12

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

C
a

ch
e

A
cc

e
ss

 L
a

te
nc

y

Total Capacity

DRAM bank

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

C
a

ch
e

A
cc

e
ss

 L
a

te
nc

y

Total Capacity

DRAM bank

Virtual Cache size

La
te

n
cy

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

C
a

ch
e

A
cc

e
ss

 L
a

te
nc

y

Total Capacity

DRAM bank

Virtual Cache size

La
te

n
cy

Access latency

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

C
a

ch
e

A
cc

e
ss

 L
a

te
nc

y

Total Capacity

DRAM bank

Virtual Cache size

La
te

n
cy

Access latency

Miss latency

Miss curve from hardware

monitors

13

Modeling performance of heterogeneous caches

 Treat SRAM and DRAM as different “flavors” of banks with different latencies

DRAM

bank

Color  latencyStart

C
a

ch
e

A
cc

e
ss

 L
a

te
nc

y

Total Capacity

DRAM bank

Virtual Cache size

La
te

n
cy

Access latency

Miss latency

Total latency

Miss curve from hardware

monitors

Latency curve for single-level,

heterogeneous cache

13

Optimizing hierarchies by minimizing system latency

14

Optimizing hierarchies by minimizing system latency

 Our prior work has proposed algorithms to take latency curves, allocate

capacity and place them on chip to minimize system latency

 But only builds single-level VHs

14

Optimizing hierarchies by minimizing system latency

 Our prior work has proposed algorithms to take latency curves, allocate

capacity and place them on chip to minimize system latency

 But only builds single-level VHs

La
te

nc
y

Capacity

App2

App3

App1

14

Optimizing hierarchies by minimizing system latency

 Our prior work has proposed algorithms to take latency curves, allocate

capacity and place them on chip to minimize system latency

 But only builds single-level VHs

La
te

nc
y

Capacity

App2

App3

App1 Capacity

App2 App1 App3

14

Optimizing hierarchies by minimizing system latency

 Our prior work has proposed algorithms to take latency curves, allocate

capacity and place them on chip to minimize system latency

 But only builds single-level VHs

La
te

nc
y

Capacity

App2

App3

App1 Capacity

App2 App1 App3

14

Multi-level hierarchies are much more complex

15

Multi-level hierarchies are much more complex

 Many intertwined factors

 Best VL1 size depends on VL2 size

 Best VL2 size depends on VL1 size

 Should we have VL2? (Depends on total size)

15

Multi-level hierarchies are much more complex

 Many intertwined factors

 Best VL1 size depends on VL2 size

 Best VL2 size depends on VL1 size

 Should we have VL2? (Depends on total size)

 Jenga encodes these tradeoffs in a single curve

 Can reuse prior allocation algorithms

15

How to get a latency curve for a multi-level VH

16

How to get a latency curve for a multi-level VH

Two-level hierarchies form

a latency surface!

16

How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Two-level hierarchies form

a latency surface!

16

Project

How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Two-level hierarchies form

a latency surface!

16

Project

How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Best overall hierarchy

at every size

Two-level hierarchies form

a latency surface!

16

Project

How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Best overall hierarchy

at every size

Two-level hierarchies form

a latency surface!

16

Project

How to get a latency curve for a multi-level VH

Best 1- and 2-level

hierarchy at every size

Best overall hierarchy

at every size

Two-level hierarchies form

a latency surface!

Curve lets us optimize

multi-level hierarchies!

16

Project

Allocating virtual hierarchies

VH2

VH3

VH1

Latency curves

17

Allocating virtual hierarchies

VH2

VH3

VH1

Latency curves

17

Cache

allocation

algorithm

Allocating virtual hierarchies

VH2

VH3

VH1

Latency curves

17

Total capacity

of each VH

Capacity

VH1 VH2 VH3

Cache

allocation

algorithm

Allocating virtual hierarchies

VH2

VH3

VH1

Latency curves

17

Total capacity

of each VH

Capacity

VH1 VH2 VH3

Cache

allocation

algorithm

Decide

the best

hierarchy

Allocating virtual hierarchies

VH2

VH3

VH1

Latency curves

17

Total capacity

of each VH

Capacity

VH1 VH2 VH3

Cache

allocation

algorithm

Decide

the best

hierarchy

Virtual hierarchy

size and levels

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

SRAM bank

DRAM bank

18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

SRAM bank

DRAM bank

18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

SRAM bank

DRAM bank

18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency

1.0X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency

1.0X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency1.3X Latency

1.0X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency1.3X Latency

1.0X Latency1.1X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency1.3X Latency

1.0X Latency1.1X Latency1.3X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency1.3X Latency

1.0X Latency1.1X Latency1.3X Latency
18

VL1

VL1

VL1 VL2

Bandwidth-aware virtual hierarchy placement

 Place data close without saturating DRAM bandwidth

 Every iteration, Jenga …

 Chooses a VH (via an opportunity cost metric, see paper)

 Greedily places a chunk of its data in its closest bank

 Update DRAM bank latency

1.0X Latency1.1X Latency1.3X Latency

1.0X Latency1.1X Latency1.3X Latency
18

VL1

VL1

VL1 VL2

Jenga adds small overheads

19

Jenga adds small overheads

 Hardware overheads

 VHT requires ∼2.4 KB/tile

 Monitors are 8 KB x 2/tile

 In total, Jenga adds ∼20 KB per tile, 4% of the SRAM banks

 Similar to Jigsaw

19

Jenga adds small overheads

 Hardware overheads

 VHT requires ∼2.4 KB/tile

 Monitors are 8 KB x 2/tile

 In total, Jenga adds ∼20 KB per tile, 4% of the SRAM banks

 Similar to Jigsaw

 Software overheads

 0.4% of system cycles at 36 tiles

 Runs concurrently with applications; only needs to pause cores to update VHTs

 Trivial to parallelize

19

See paper for …

 Hardware support for

 Fast reconfiguration

 Page reclassification

 Efficient implementation of hierarchy allocation

 OS integration

20

Evaluation

21

Evaluation

 Modeled system

 36 cores on 6x6 mesh

 18MB SRAM

 1GB Stacked DRAM

21

Evaluation

 Modeled system

 36 cores on 6x6 mesh

 18MB SRAM

 1GB Stacked DRAM

 Workloads

 36 copies of same app (SPECrate)

 Random 36 SPECCPU apps mixes

 36-threaded SPECOMP apps

21

Evaluation

 Modeled system

 36 cores on 6x6 mesh

 18MB SRAM

 1GB Stacked DRAM

 Workloads

 36 copies of same app (SPECrate)

 Random 36 SPECCPU apps mixes

 36-threaded SPECOMP apps

 Compared 5 schemes

SRAM DRAM

S-NUCA Rigid L3 -

Alloy Rigid L3 Rigid L4

Jigsaw App-specific L3 -

JigAlloy App-specific L3 Rigid L4

Jenga App-specific Virtual Hierarchies
21

Case study: 36 copies of xalanc

22

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

22

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

Private L2

22

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

Private L2

22

Rigid SRAM L3
Data

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

Memory

Private L2

22

Rigid SRAM L3
Data

~100%

miss rate

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

Memory

Private L2

Wasteful accesses to

L3, should have gone

to memory directly

22

Rigid SRAM L3
Data

~100%

miss rate

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

Memory

Private L2

Wasteful accesses to

L3, should have gone

to memory directly

22

Rigid SRAM L3
Data

~100%

miss rate

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

23

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

23

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

23

Rigid SRAM L3
Data

Case study: 36 copies of xalanc

Private L2

Rigid DRAM L4

Working set: 6MB x 36 = 216 MB

23

Rigid SRAM L3
Data

~100%

miss rate

Case study: 36 copies of xalanc

Memory

Private L2

Rigid DRAM L4

Working set: 6MB x 36 = 216 MB

23

Rigid SRAM L3
Data

~100%

miss rate

~0%

miss rate

Case study: 36 copies of xalanc

Memory

Private L2

Rigid DRAM L4

Cache working

sets with DRAM L4

Working set: 6MB x 36 = 216 MB

23

Rigid SRAM L3
Data

~100%

miss rate

~0%

miss rate

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

24

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

24

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

24

App-specific SRAM L3

Case study: 36 copies of xalanc

Memory

Private L2

Working set: 6MB x 36 = 216 MB

24

App-specific SRAM L3

~90% miss

rate

Case study: 36 copies of xalanc

Memory

Private L2

Reduce 10% misses with

app-specific SRAM L3

Working set: 6MB x 36 = 216 MB

24

App-specific SRAM L3

~90% miss

rate

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

25

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

25

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

25

App-specific SRAM L3

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

25

App-specific SRAM L3

~90% miss

rate

Case study: 36 copies of xalanc

Private L2

Rigid DRAM L4

Working set: 6MB x 36 = 216 MB

25

App-specific SRAM L3

~90% miss

rate

Case study: 36 copies of xalanc

Memory

Private L2

Rigid DRAM L4

Working set: 6MB x 36 = 216 MB

25

App-specific SRAM L3

~90% miss

rate

~0%

miss rate

Case study: 36 copies of xalanc

Memory

Private L2

Rigid DRAM L4

Combines Jigsaw’s and

Alloy’s benefits, but

still a rigid hierarchy

Working set: 6MB x 36 = 216 MB

25

App-specific SRAM L3

~90% miss

rate

~0%

miss rate

Case study: 36 copies of xalanc

Working set: 6MB x 36 = 216 MB

26

Case study: 36 copies of xalanc

Private L2

Working set: 6MB x 36 = 216 MB

26

Case study: 36 copies of xalanc

Private L2

6MB, SRAM + DRAM

VL1-only hierarchy

Working set: 6MB x 36 = 216 MB

26

…

…

…

Case study: 36 copies of xalanc

Memory

Private L2

6MB, SRAM + DRAM

VL1-only hierarchy

Working set: 6MB x 36 = 216 MB

26

~0% miss

rate

…

…

…

Case study: 36 copies of xalanc

Memory

Private L2

6MB, SRAM + DRAM

VL1-only hierarchy

Single lookup to the

working set!

No wasteful lookups!

60%

better

20%

better

Working set: 6MB x 36 = 216 MB

26

~0% miss

rate

…

…

…

Case study: 36 copies of xalanc

Memory

Private L2

6MB, SRAM + DRAM

VL1-only hierarchy

Single lookup to the

working set!

No wasteful lookups!

60%

better

20%

better

Working set: 6MB x 36 = 216 MB

26

~0% miss

rate

…

…

…

Jenga improves performance and energy efficiency by

creating the right hierarchy using the best available resources!

Jenga works across a wide range of behaviors

App with two-level working set App with flat working set

27

Jenga works across a wide range of behaviors

Working set

Jenga VHs
SRAM VL1

DRAM VL2

0.5MB +

16MB

1MB +

8MB

SRAM+DRAM VL1

DRAM VL2

App with two-level working set App with flat working set

27

Jenga works across a wide range of behaviors

Working set

Jenga VHs
SRAM VL1

DRAM VL2

0.5MB +

16MB

1MB +

8MB

SRAM+DRAM VL1

DRAM VL2

2.5MB

SRAM+

DRAM VL1

8MB

SRAM+

DRAM VL1

>50MB

DRAM VL1 or

No caching

App with two-level working set App with flat working set

27

Jenga works for random multi-program mixes

28

Jenga works for random multi-program mixes

2.6X over S-NUCA

20% over JigAlloy
28

Jenga works for random multi-program mixes

2.6X over S-NUCA

20% over JigAlloy

1.7X over S-NUCA

10% over JigAlloy
28

Jenga works for random multi-program mixes

Jenga consistently outperforms the other

schemes for multi-program mixes

2.6X over S-NUCA

20% over JigAlloy

1.7X over S-NUCA

10% over JigAlloy
28

See paper for more results

 Full result for SPECCPU-rate

 Multithreaded apps

 Sensitivity study for Jenga’s software techniques

 2.5D DRAM architectures

 Jigsaw SRAM L3 + Jigsaw DRAM L4

 And more

29

Conclusion

30

Conclusion

 Rigid, multi-level cache hierarchies are ill-suited to many applications

 They cause significant overhead when they are not helpful

30

Conclusion

 Rigid, multi-level cache hierarchies are ill-suited to many applications

 They cause significant overhead when they are not helpful

 We propose Jenga, a software-defined, reconfigurable cache hierarchy

 Adopts application-specific organization on-the-fly

 Uses new software algorithm to find near-optimal hierarchy efficiently

30

Conclusion

 Rigid, multi-level cache hierarchies are ill-suited to many applications

 They cause significant overhead when they are not helpful

 We propose Jenga, a software-defined, reconfigurable cache hierarchy

 Adopts application-specific organization on-the-fly

 Uses new software algorithm to find near-optimal hierarchy efficiently

 Jenga improves both performance and energy efficiency, by up to 85% in

EDP, over a combination of state-of-art techniques

30

Thanks! Questions?

 Rigid, multi-level cache hierarchies are ill-suited to many applications

 They cause significant overhead when they are not helpful

 We propose Jenga, a software-defined, reconfigurable cache hierarchy

 Adopts application-specific organization on-the-fly

 Uses new software algorithm to find near-optimal hierarchy efficiently

 Jenga improves both performance and energy efficiency, by up to 85% in

EDP, over a combination of state-of-art techniques

31

Thank you for your attention!

Questions?

Jenga: Software-Defined Cache Hierarchies

