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Background

Challenge 1: Apps have different preferences
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3D stacking has enabled systems with asymmetric memory hierarchies

Shallow hierarchy: Near-data processing cores 
with shallow hierarchies using few cache levels 
between cores and memories

Scheduling Applications to the Right Hierarchy is Challenging
Challenge 2: Preferences 
change over time

Challenge 3: Preferences change when 
LLC capacity is contented

AMS: Adaptive Scheduling for Asymmetric Memory Systems

Schedule threads

Estimate performance 
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Insight: Modeling a thread’s preferences to 
different hierarchies bears a strong resemblance 
to the cache partitioning problem!

Contribution 1: Analytical model to account for asymmetries

Contribution 2: Two thread placement algorithms that extend 
techniques originally designed for cache partitioning
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AMS overview

1. AMS-Greedy
Performs multiple rounds 
of cache partitioning and 
uses its outcomes to 
greedily map threads to 
hierarchies

2. AMS-DP
Leverages dynamic 
programming to explore 
the full space of decisions 
efficiently, finding the 
optimal schedule given 
the analytical model

Low-overhead yet 
high-quality

More expensive but finds 
the optimal schedule 

under the model 

Evaluation

See the paper (https://goo.gl/3yjDmK) for more results: 
case study of AMS adapting to phases, comparison with 
prior contention- and core-asymmetry-aware schedulers

1. Methodology:
8-core processor die; 3-level deep hierarchy with 16MB shared LLC
4 NDP stacks; 2 cores per stack; 2-level private-cache-only shallow hierarchy

2. Multi-programmed results
AMS-Greedy finds the right hierarchy for each application. It never hurts
performance and improves weighted speedup by up to 37% and by 18% on
average over the Random baseline.

3. Multi-threaded results
AMS also handles multithreaded workloads
under asymmetric hierarchies, improving gmean
performance by 22% over the Random baseline

https://goo.gl/3yjDmK

