Adaptive Scheduling for Systems with Asymmetric Memory Hierarchies

Po-An Tsai, Changping Chen, and Daniel Sanchez

{poantsai, cchen, sanchez}@csail.mit.edu

Background

with shallow hierarchies using few cache levels between cores and memories

Scheduling Applications to the Right Hierarchy is Challenging

Challenge 1: Apps have different preferences

Shallow Deep Perf/J r Perf/J 5.0 40 Instructions (Billions

Challenge 3: Preferences change when LLC capacity is contented

NDP core

Processor-die

Add non-memory

component

weighed by ILP

AMS: Adaptive Scheduling for Asymmetric Memory Systems

from UMON

Insight: Modeling a thread's preferences to

Contribution 1: Analytical model to account for asymmetries

Weigh by MLP

Memory stall curves Miss curve Latency curve model

NDP core in the

same stack of data

IDP core

Core cycle curves

Non-mem[cycles

Processor-die core

NDP core

different hierarchies bears a strong resemblance to the cache partitioning problem!

Evaluation

Miss(

Multi-threaded results 3.

Methodology: 1.

8-core processor die; 3-level deep hierarchy with 16MB shared LLC 4 NDP stacks; 2 cores per stack; 2-level private-cache-only shallow hierarchy

2. Multi-programmed results

AMS-Greedy finds the right hierarchy for each application. It never hurts performance and improves weighted speedup by up to 37% and by 18% on average over the Random baseline.

