
Deep hierarchy: Conventional multi-core
processors with multi-level cache hierarchy

Adaptive Scheduling for Systems with
Asymmetric Memory Hierarchies

Po-An Tsai, Changping Chen, and Daniel Sanchez
{poantsai, cchen, sanchez}@csail.mit.edu

Background

Challenge 1: Apps have different preferences

Shared LLC

Conventional Multicores

Private Caches

DRAM
Dies

Logic
Layer

NDP Core Vault Controller
Private Cache [ISCA’15, PACT’15, ISCA’16, ASPLOS’18]

3D stacking has enabled systems with asymmetric memory hierarchies

Shallow hierarchy: Near-data processing cores
with shallow hierarchies using few cache levels
between cores and memories

Scheduling Applications to the Right Hierarchy is Challenging
Challenge 2: Preferences
change over time

Challenge 3: Preferences change when
LLC capacity is contented

AMS: Adaptive Scheduling for Asymmetric Memory Systems

Schedule threads

Estimate performance
under different hierarchies

1st Phase

M
is

se
s

Cache size

Hardware
utility

monitors

Miss curves

2nd Phase

Find thread placement with

H
ar

d
w

ar
e

So
ft

w
ar

e

Sample
accessesProduce

AMS-Greedy or

AMS-DP

Insight: Modeling a thread’s preferences to
different hierarchies bears a strong resemblance
to the cache partitioning problem!

Contribution 1: Analytical model to account for asymmetries

Contribution 2: Two thread placement algorithms that extend
techniques originally designed for cache partitioning

C
o

st

LLC Capacity
2 4 6 8

C
o

st

LLC Capacity
2 4 6 8

C
o

st

LLC Capacity
2 4 6 8

3MB

Partition the LLC among threads 1-3

Thread 1 Thread 2 Thread 3
4MB

8MB

Opportunity cost <0
move to NDP

1MB

: Opportunity cost

Weigh by MLP
Add non-memory

component
weighed by ILP Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
em

o
ry

 s
ta

lls
Memory stall curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

NDP core

C
o

re
 c

yc
le

s

Core cycle curves

Non-mem cycles

 M

is
se

s

Miss curve
from UMON

LLC Capacity (MB)

La
te

n
cy

Latency curve model

Processor-die core

NDP core

NDP core in the
same stack of data

LLC Capacity (MB)
2 4 6 8 2 4 6 8

AMS overview

1. AMS-Greedy
Performs multiple rounds
of cache partitioning and
uses its outcomes to
greedily map threads to
hierarchies

2. AMS-DP
Leverages dynamic
programming to explore
the full space of decisions
efficiently, finding the
optimal schedule given
the analytical model

Low-overhead yet
high-quality

More expensive but finds
the optimal schedule

under the model

Evaluation

See the paper (https://goo.gl/3yjDmK) for more results:
case study of AMS adapting to phases, comparison with
prior contention- and core-asymmetry-aware schedulers

1. Methodology:
8-core processor die; 3-level deep hierarchy with 16MB shared LLC
4 NDP stacks; 2 cores per stack; 2-level private-cache-only shallow hierarchy

2. Multi-programmed results
AMS-Greedy finds the right hierarchy for each application. It never hurts
performance and improves weighted speedup by up to 37% and by 18% on
average over the Random baseline.

3. Multi-threaded results
AMS also handles multithreaded workloads
under asymmetric hierarchies, improving gmean
performance by 22% over the Random baseline

https://goo.gl/3yjDmK

