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Neither shallow nor deep hierarchies work well 

for all applications…
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Prior work proposes hybrid system with asymmetric 
memory hierarchies to get the best of both

Asymmetric hierarchies get the best of both worlds

[Ahn et al., ISCA’15][Gao et al., PACT’15]

[Hsieh et al., ISCA’16][Boroumand et al., ASPLOS’18]
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Performance/J of milc
on different hierarchies

How well each application can use the 

shared LLC is critical to its preference

Performance/J of xalanc
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Many applications prefer different 

hierarchies over time because they 

have different phases

Applications may prefer different 

hierarchies due to resource 

contention with other applications
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 Contention-aware scheduling (Bubble-up [Mars, MICRO’11], CRUISE [Jaleel, ASPLOS’12])

 Focuses on symmetric memory systems (multi-socket LLCs/NUMA)

 Heterogeneous core-aware scheduling (PIE [Van Craeynest, ISCA’12][Cong, ISPLED’11])

 Focuses on asymmetric core microarchitectures (big.LITTLE systems)

 NDP-aware workload partitioning (PIM-enabled Instructions [Ahn, ISCA’15], TOM [Hsieh, ISCA’16])

 Focuses on single workloads and requires software modifications or compiler support

By contrast, our goal is to schedule threads considering both memory and 

core asymmetries, with no program modifications and transparently to users 
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 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC 
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 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC 

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

 Shallow hierarchy has no shared LLC

 Lat = # accesses x Latency of shallow mem

AMS analytical model
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 Combine model from prior work (PIE) with our memory latency model
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AMS-DP: Scheduling threads with dynamic programming

12

 Prior work has shown that dynamic programming (DP) solve cache partitioning 

optimally in polynomial time

 We propose an algorithm using DP to solve our optimization problem optimally

 AMS-DP serves as the upper bound of AMS-Greedy

 But it is more expensive
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Data placement for asymmetric hierarchies
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 NDP systems have different constraints from NUMA systems

 NDP cores have plentiful intra-stack bandwidth but limited inter-stack bandwidth

 We use simple heuristics to keep data from a thread in a single stack

 Threads try to allocate to the same stack so long as the stack has enough capacity



See paper for more details
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 Handling multithreaded workloads

 AMS-DP formulation

 Different system scenarios

 Oversubscribed systems

 Short-lived workloads or latency critical workloads
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32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks, 

each with 2 NDP cores. Each core has 

private 32KB L1 + 256KB L2

 Compared schedulers

 Random (baseline that we normalize to)

 Always NDP/Always processor-die

 Extended CRUISE [ASPLOS’12]/PIE [ISCA’11]

 AMS-Greedy/AMS-DP
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Always processor never leverages the 

NDP capability of the asymmetric system 

and is 8% worse than Random

Always NDP sometimes hurts applications 

that prefer deep hierarchies because it 

never leverages the LLC. Only 9% better

AMS-Greedy never hurts performance 

and improves weighted speedup by up to 

37% and by 18% on average
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AMS-Greedy performs very 

close to AMS-DP, only 1% worse

Both AMS-Greedy and AMS-

DP outperform CRUISE
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 Deep hierarchy uses Haswell-like cores

 Shallow hierarchy uses Silvermont-like cores

AMS-Greedy with the PIE model 

improves performance more than 

handling core/memory 

asymmetries separately  



See paper for more evaluation results
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 A case study to show AMS adapts to application phases 

 Multithreaded workloads

 Detailed runtime overheads

 Sensitivity study for system parameters 

 Number of cores, LLC capacity, main memory capacity

 Performance without and with hardware support for cache partitioning
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 We present AMS, an adaptive scheduler for asymmetric systems

AMS uses analytical models to adapt quickly and thread mapping algorithms 

inspired by cache partitioning algorithms to find high-quality mappings
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Thanks! Any questions?
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