
Adaptive Scheduling for Systems with

Asymmetric Memory Hierarchies

Po-An Tsai, Changping Chen, and Daniel Sanchez

Die-stacking has enabled near-data processing

Die-stacking has enabled near-data processing

Conventional multicore processors use

a multi-level deep cache hierarchy to

reduce data movement

Shared LLC

Cores

Private Caches

Die-stacking has enabled near-data processing

Conventional multicore processors use

a multi-level deep cache hierarchy to

reduce data movement

Shared LLC

Cores

Private Caches

DRAM Dies

Logic

Layer

Near-data processors place

cores close to main memory to

reduce data movement

NDP Core

Vault

Controller

Private cache only

(shallow hierarchy)

Die-stacking has enabled near-data processing

Conventional multicore processors use

a multi-level deep cache hierarchy to

reduce data movement

Shared LLC

Cores

Private Caches

DRAM Dies

Logic

Layer

Near-data processors place

cores close to main memory to

reduce data movement

NDP Core

Vault

Controller

Private cache only

(shallow hierarchy)

Neither shallow nor deep hierarchies work well

for all applications…

Asymmetric hierarchies get the best of both worlds

Asymmetric hierarchies get the best of both worlds

Prior work proposes hybrid system with asymmetric
memory hierarchies to get the best of both

Asymmetric hierarchies get the best of both worlds

[Ahn et al., ISCA’15][Gao et al., PACT’15]

[Hsieh et al., ISCA’16][Boroumand et al., ASPLOS’18]

Applications have strong hierarchy preferences

4

Applications have strong hierarchy preferences

4

0

10

20

30

40

50

60

70

80

Deep hier.
LLC hit

Shallow
hierarchy

Deep hier.
LLC miss

A
cc

e
ss

 l
a
te

n
cy

 (
n
s)

Applications have strong hierarchy preferences

4

Performance/J of milc
on different hierarchies

0

10

20

30

40

50

60

70

80

Deep hier.
LLC hit

Shallow
hierarchy

Deep hier.
LLC miss

A
cc

e
ss

 l
a
te

n
cy

 (
n
s)

0

0.5

1

1.5

2

2.5

3

Deep
hierarchy

Shallow
hierarchy

N
o
rm

a
li
z
e
d
 P

e
rf

/J

Applications have strong hierarchy preferences

4

Performance/J of milc
on different hierarchies

Performance/J of xalanc
on different hierarchies

0

10

20

30

40

50

60

70

80

Deep hier.
LLC hit

Shallow
hierarchy

Deep hier.
LLC miss

A
cc

e
ss

 l
a
te

n
cy

 (
n
s)

0

0.5

1

1.5

2

2.5

3

Deep
hierarchy

Shallow
hierarchy

N
o
rm

a
li
z
e
d
 P

e
rf

/J

0

0.2

0.4

0.6

0.8

1

1.2

Deep
hierarchy

Shallow
hierarchy

N
o
rm

a
li
z
e
d
 P

e
rf

/J

Applications have strong hierarchy preferences

4

Performance/J of milc
on different hierarchies

How well each application can use the

shared LLC is critical to its preference

Performance/J of xalanc
on different hierarchies

0

10

20

30

40

50

60

70

80

Deep hier.
LLC hit

Shallow
hierarchy

Deep hier.
LLC miss

A
cc

e
ss

 l
a
te

n
cy

 (
n
s)

0

0.5

1

1.5

2

2.5

3

Deep
hierarchy

Shallow
hierarchy

N
o
rm

a
li
z
e
d
 P

e
rf

/J

0

0.2

0.4

0.6

0.8

1

1.2

Deep
hierarchy

Shallow
hierarchy

N
o
rm

a
li
z
e
d
 P

e
rf

/J

Scheduling programs to the right hierarchy is hard

5

Scheduling programs to the right hierarchy is hard

5

Many applications prefer different

hierarchies over time because they

have different phases

Performance/J of gems

Scheduling programs to the right hierarchy is hard

5

Many applications prefer different

hierarchies over time because they

have different phases

Applications may prefer different

hierarchies due to resource

contention with other applications

0

0.5

1

1.5

2

2.5

Shallow
hierarchy

Deep
hierarchy
2MB LLC

Deep
hierarchy
4MB LLC

Deep
hierarchy
8MB LLC

Deep
hierarchy
16MB LLC

N
o
rm

a
li
z
e
d
 P

e
rf

/J

Performance/J of gems Performance/J of xalanc

Prior schedulers focus on different systems and constraints

6

Prior schedulers focus on different systems and constraints

6

 Contention-aware scheduling (Bubble-up [Mars, MICRO’11], CRUISE [Jaleel, ASPLOS’12])

 Focuses on symmetric memory systems (multi-socket LLCs/NUMA)
LLC 1

8MB

LLC 2

8MB

Prior schedulers focus on different systems and constraints

6

 Contention-aware scheduling (Bubble-up [Mars, MICRO’11], CRUISE [Jaleel, ASPLOS’12])

 Focuses on symmetric memory systems (multi-socket LLCs/NUMA)

 Heterogeneous core-aware scheduling (PIE [Van Craeynest, ISCA’12][Cong, ISPLED’11])

 Focuses on asymmetric core microarchitectures (big.LITTLE systems)
In-order

cores

OoO

cores

LLC 1

8MB

LLC 2

8MB

Prior schedulers focus on different systems and constraints

6

 Contention-aware scheduling (Bubble-up [Mars, MICRO’11], CRUISE [Jaleel, ASPLOS’12])

 Focuses on symmetric memory systems (multi-socket LLCs/NUMA)

 Heterogeneous core-aware scheduling (PIE [Van Craeynest, ISCA’12][Cong, ISPLED’11])

 Focuses on asymmetric core microarchitectures (big.LITTLE systems)

 NDP-aware workload partitioning (PIM-enabled Instructions [Ahn, ISCA’15], TOM [Hsieh, ISCA’16])

 Focuses on single workloads and requires software modifications or compiler support

In-order

cores

OoO

cores

LLC 1

8MB

LLC 2

8MB

Prior schedulers focus on different systems and constraints

6

 Contention-aware scheduling (Bubble-up [Mars, MICRO’11], CRUISE [Jaleel, ASPLOS’12])

 Focuses on symmetric memory systems (multi-socket LLCs/NUMA)

 Heterogeneous core-aware scheduling (PIE [Van Craeynest, ISCA’12][Cong, ISPLED’11])

 Focuses on asymmetric core microarchitectures (big.LITTLE systems)

 NDP-aware workload partitioning (PIM-enabled Instructions [Ahn, ISCA’15], TOM [Hsieh, ISCA’16])

 Focuses on single workloads and requires software modifications or compiler support

By contrast, our goal is to schedule threads considering both memory and

core asymmetries, with no program modifications and transparently to users

In-order

cores

OoO

cores

LLC 1

8MB

LLC 2

8MB

7

Hardware

utility

monitors

H
a
rd

w
a
re

S
o
ft

w
a
re

Sample

accesses

M
is
se

s

Cache size

Miss curves

Produce

AMS: An asymmetry-aware scheduler

Analytical model that estimates

performance under different hierarchies

First contribution

Schedule threads

Second contribution

Two thread placement algorithms

(AMS-Greedy/AMS-DP) that

extend techniques originally

designed for cache partitioning

AMS analytical model

8

 AMS estimates application preferences using total memory access latency

AMS analytical model

8

 AMS estimates application preferences using total memory access latency

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

A function of LLC capacity

 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

La
te

nc
y

Latency curve model

Processor-die

core

LLC Capacity (MB)
2 4 6 8

A function of LLC capacity

 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

 Shallow hierarchy has no shared LLC

 Lat = # accesses x Latency of shallow mem

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

NDP coreLa
te

nc
y

Latency curve model

Processor-die

core

LLC Capacity (MB)
2 4 6 8

A function of LLC capacity

 AMS estimates application preferences using total memory access latency

 Deep hierarchy has a shared LLC

 Lat = (# accesses x Latency of LLC) + (# misses x Latency of deep mem)

 Shallow hierarchy has no shared LLC

 Lat = # accesses x Latency of shallow mem

AMS analytical model

8

#

M

is
se

s

Miss curve from

hardware monitors

LLC Capacity (MB)
2 4 6 8

NDP coreLa
te

nc
y

Latency curve model

Processor-die

core

LLC Capacity (MB)
2 4 6 8

A function of LLC capacity

Use processor-die core

Use NDP core

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

NDP core

M
e
m

o
ry

 l
a

te
nc

y

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

NDP core

M
e
m

o
ry

 l
a

te
nc

y

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Weigh

by MLP

Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
e
m

o
ry

 s
ta

lls

Memory stall curves

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

NDP core

M
e
m

o
ry

 l
a

te
nc

y

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Weigh

by MLP

Add

non-memory

component

weighed

by ILP Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
e
m

o
ry

 s
ta

lls

Memory stall curves

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

NDP core

M
e
m

o
ry

 l
a

te
nc

y

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Weigh

by MLP

Add

non-memory

component

weighed

by ILP Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
e
m

o
ry

 s
ta

lls

Memory stall curves

Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

C
o
re

 c
y
cl

e
s

Core cycle curves

Non-mem cycles

Handling heterogeneous cores

9

 Combine model from prior work (PIE) with our memory latency model

NDP core

M
e
m

o
ry

 l
a

te
nc

y

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Weigh

by MLP

Add

non-memory

component

weighed

by ILP Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
e
m

o
ry

 s
ta

lls

Memory stall curves

Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

C
o
re

 c
y
cl

e
s

Core cycle curves

Non-mem cycles

Can be extended to other asymmetries,

like frequencies (see paper)

AMS-Greedy overview

10

 Solve an optimization problem that seeks to minimize total cost

AMS-Greedy overview

10

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

Cache

partitioning

algo. from

prior work

Partition

plan

T1: 3MB

T2: 1MB

T3: 4MB

…

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

Cache

partitioning

algo. from

prior work

Partition

plan

T1: 3MB

T2: 1MB

T3: 4MB

…

Compare cost of

deep/shallow

hier. according

to the plan

Map some

threads to

shallow hierarchy

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

Cache

partitioning

algo. from

prior work

Partition

plan

T1: 3MB

T2: 1MB

T3: 4MB

…

Compare cost of

deep/shallow

hier. according

to the plan

Map some

threads to

shallow hierarchy

Do

remaining

threads fit

in deep

hier.?

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

Cache

partitioning

algo. from

prior work

Partition

plan

T1: 3MB

T2: 1MB

T3: 4MB

…

Compare cost of

deep/shallow

hier. according

to the plan

Map some

threads to

shallow hierarchy

Do

remaining

threads fit

in deep

hier.?

Yes

Done

 Solve an optimization problem that seeks to minimize total cost

 Initially, starts by mapping all threads to the deep hierarchy (processor-die)

and moves some threads to the NDP cores over multiple rounds

AMS-Greedy overview

10

Input:

Cost curves of all

threads for deep

hierarchy

Cache

partitioning

algo. from

prior work

Partition

plan

T1: 3MB

T2: 1MB

T3: 4MB

…

Compare cost of

deep/shallow

hier. according

to the plan

Map some

threads to

shallow hierarchy

Do

remaining

threads fit

in deep

hier.?

Yes

Done

No

Cost curves for threads still

mapped the deep hierarchy

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

Thread 1 Thread 2 Thread 3

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

8MB

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

1MB

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

1MB

: Opportunity cost

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

 Uses opportunity cost to decide which thread should give up processor-die
C

o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

1MB

: Opportunity cost
Opportunity cost <0

move to NDP

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

 Uses opportunity cost to decide which thread should give up processor-die
C

o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

1MB

: Opportunity cost
Opportunity cost <0

move to NDP

Perform multiple rounds

of partitioning until the

processor die is not

oversubscribed

AMS-Greedy: Leveraging cache partitioning to schedule threads

11

 Uses opportunity cost to decide which thread should give up processor-die
C

o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

C
o
st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC

among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

1MB

: Opportunity cost
Opportunity cost <0

move to NDP

Perform multiple rounds

of partitioning until the

processor die is not

oversubscribed

Overhead: 0.1% of system

cycles when scheduling

every 50ms

AMS-DP: Scheduling threads with dynamic programming

12

AMS-DP: Scheduling threads with dynamic programming

12

 Prior work has shown that dynamic programming (DP) solve cache partitioning

optimally in polynomial time

 We propose an algorithm using DP to solve our optimization problem optimally

AMS-DP: Scheduling threads with dynamic programming

12

 Prior work has shown that dynamic programming (DP) solve cache partitioning

optimally in polynomial time

 We propose an algorithm using DP to solve our optimization problem optimally

AMS-DP: Scheduling threads with dynamic programming

12

 Prior work has shown that dynamic programming (DP) solve cache partitioning

optimally in polynomial time

 We propose an algorithm using DP to solve our optimization problem optimally

AMS-DP: Scheduling threads with dynamic programming

12

 Prior work has shown that dynamic programming (DP) solve cache partitioning

optimally in polynomial time

 We propose an algorithm using DP to solve our optimization problem optimally

 AMS-DP serves as the upper bound of AMS-Greedy

 But it is more expensive

Data placement for asymmetric hierarchies

13

Data placement for asymmetric hierarchies

13

Data placement for asymmetric hierarchies

13

Data placement for asymmetric hierarchies

13

 NDP systems have different constraints from NUMA systems

 NDP cores have plentiful intra-stack bandwidth but limited inter-stack bandwidth

Data placement for asymmetric hierarchies

13

 NDP systems have different constraints from NUMA systems

 NDP cores have plentiful intra-stack bandwidth but limited inter-stack bandwidth

 We use simple heuristics to keep data from a thread in a single stack

 Threads try to allocate to the same stack so long as the stack has enough capacity

See paper for more details

14

 Handling multithreaded workloads

 AMS-DP formulation

 Different system scenarios

 Oversubscribed systems

 Short-lived workloads or latency critical workloads

Evaluation

15

Evaluation

15

 Modeled system:

Evaluation

15

 Modeled system:

Evaluation

15

 Modeled system:

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Evaluation

15

 Modeled system:

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

 Compared schedulers

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

 Compared schedulers

 Random (baseline that we normalize to)

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

 Compared schedulers

 Random (baseline that we normalize to)

 Always NDP/Always processor-die

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

 Compared schedulers

 Random (baseline that we normalize to)

 Always NDP/Always processor-die

 Extended CRUISE [ASPLOS’12]/PIE [ISCA’11]

Evaluation

15

 Modeled system:

 Workloads

 Multi-programmed SPECCPU

 Multithreaded SPECOMP/PARSEC

(see paper)

Deep hierarchy: 8-core processor

32KB L1, 256KB L2, 16MB shared LLC

Shallow hierarchy: 4 memory stacks,

each with 2 NDP cores. Each core has

private 32KB L1 + 256KB L2

 Compared schedulers

 Random (baseline that we normalize to)

 Always NDP/Always processor-die

 Extended CRUISE [ASPLOS’12]/PIE [ISCA’11]

 AMS-Greedy/AMS-DP

AMS finds the right hierarchy for each application

16

AMS finds the right hierarchy for each application

16

AMS finds the right hierarchy for each application

16

Always processor never leverages the

NDP capability of the asymmetric system

and is 8% worse than Random

AMS finds the right hierarchy for each application

16

Always processor never leverages the

NDP capability of the asymmetric system

and is 8% worse than Random

Always NDP sometimes hurts applications

that prefer deep hierarchies because it

never leverages the LLC. Only 9% better

AMS finds the right hierarchy for each application

16

Always processor never leverages the

NDP capability of the asymmetric system

and is 8% worse than Random

Always NDP sometimes hurts applications

that prefer deep hierarchies because it

never leverages the LLC. Only 9% better

AMS-Greedy never hurts performance

and improves weighted speedup by up to

37% and by 18% on average

AMS handles resource contention better than prior work

17

 Run workloads with 100% utilization to stress contention

AMS handles resource contention better than prior work

17

 Run workloads with 100% utilization to stress contention

AMS handles resource contention better than prior work

17

 Run workloads with 100% utilization to stress contention

AMS handles resource contention better than prior work

17

AMS-Greedy performs very

close to AMS-DP, only 1% worse

 Run workloads with 100% utilization to stress contention

AMS handles resource contention better than prior work

17

AMS-Greedy performs very

close to AMS-DP, only 1% worse

Both AMS-Greedy and AMS-

DP outperform CRUISE

AMS handles asymmetric core + memory well

18

AMS handles asymmetric core + memory well

18

 Deep hierarchy uses Haswell-like cores

 Shallow hierarchy uses Silvermont-like cores

AMS handles asymmetric core + memory well

18

 Deep hierarchy uses Haswell-like cores

 Shallow hierarchy uses Silvermont-like cores

AMS handles asymmetric core + memory well

18

 Deep hierarchy uses Haswell-like cores

 Shallow hierarchy uses Silvermont-like cores

AMS-Greedy with the PIE model

improves performance more than

handling core/memory

asymmetries separately

See paper for more evaluation results

19

 A case study to show AMS adapts to application phases

 Multithreaded workloads

 Detailed runtime overheads

 Sensitivity study for system parameters

 Number of cores, LLC capacity, main memory capacity

 Performance without and with hardware support for cache partitioning

Conclusion

20

Conclusion

20

 Scheduling computation in asymmetric systems is very challenging

Conclusion

20

 Scheduling computation in asymmetric systems is very challenging

 We present AMS, an adaptive scheduler for asymmetric systems

AMS uses analytical models to adapt quickly and thread mapping algorithms

inspired by cache partitioning algorithms to find high-quality mappings

Hardware

utility

monitors

H
a
rd

w
a
re

S
o
ft
w

a
re

Sample

accesses

M
is
se

s

Cache size

Miss curves

Produce

Analytical model that estimates

performance under different hierarchies

First contribution

Schedule threads

Second contribution

Two thread placement algorithms

that extends techniques originally

designed for cache partitioning

Thanks! Any questions?

21

 Scheduling computation in asymmetric systems is very challenging

 We present AMS, an adaptive scheduler for asymmetric systems

AMS uses analytical models to adapt quickly and thread mapping algorithms

inspired by cache partitioning algorithms to find high-quality mappings

Hardware

utility

monitors

H
a
rd

w
a
re

S
o
ft
w

a
re

Sample

accesses

M
is
se

s

Cache size

Miss curves

Produce

Analytical model that estimates

performance under different hierarchies

First contribution

Schedule threads

Second contribution

Two thread placement algorithms

that extends techniques originally

designed for cache partitioning

