Rethinking the Memory Hierarchy for Modern Languages
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Objects are allocated in the fast, efficient L1 pad, rather
than allocated in and fetched from main memory.
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Evaluation

Methodology: ¢ Simulate Hotpads using Maxsim simulator (Zsim+Maxine JVM) ¢ 4 Westmere-like OOO cores  Hotpads acts like a super-

* 13 Java Applications from Dacapo, Jgrapht, SpecJBB * 3-level cache/pad hierarchy  generational collector:
Execution time breakdown: Dynamic memory hierarchy energy: Most objects are collected
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*  GC cost reduced by 8x with Hardware CE *  Dynamic energy reduced by 2.7x in the L1 pad. 90% of them

* 34% performance improvement e Large reductions in L1D, Mem and GC never reach main memory
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See the paper (https://goo.gl/eXzG6a) for: Pointer rewriting and CE analysis, legacy mode for running conventional apps, coherence, and more!
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