Rethinking the Memory Hierarchy for Modern Languages

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez Illil- ﬁ}%
{poantsai, elainegn, sanchez}ldcsaill.mit.edu
CSAIL
_ Motivation Hotpads Overview
Object-based memory model enables memory safety A novel memory hierarchy designed for memory-
& automatic memory management (GC) ({ ' ~ safe, object-based languages that support objects
+ simplifies programming = °° and pointers at the ISA level
+ prevents memory bugs Java | ' Example Hotpads hierarchy Pad Organization
- GddS Overheads) - Data Array —
Overheads due to mismatch between flat memory S 2
systems and object-based, memory-safe languages Objects g =
Core| i — L2 Main _8'. &
Key Insight: Hiding memory layout in ~— Pad ~— Pad " \Memory Freespace ||| & ©
hardware enables new optimizations for Canonical
Tags

object-based programs

Hotpads Key Features

RegFile L1 Pad L2 Pad Main Mem
: a — Key Feature 3:
Objects ~— = . .
— - Allocate W L-_ In-hierarchy object
Free Obj. C - allocation to reduce
space memory traffic

Objects are allocated in the fast, efficient L1 pad, rather
than allocated in and fetched from main memory.

9 Key Feature 4:

L1 pad “3 me‘ Unifying hierarchical

0 Initial state with 2 objects A and B

] _

Q Key Feature 1: Implicit object
Read A Mmovementin response to accesses

< £l GC and data movement
in hardware

Cis dead (not pointed by). D is alive (pointed by B). /. and B are
not collected because they are copies . B is recently-used.

, , , Collection-Eviction (CE):
Many objects die young and never reach main memory. 1 Eind '
~ = Frequently used objects are kept in small, fast pads. - Fin rO.O > .

-, L 2. Mark live objects
'H B e /-}-\ 3. Compact & evict

p Free - live objects

Key Feature 2: Pointer rewritin After L1 L-| i
9 Y 8 ad CE space \.-_ B (stale 4. Update pointers

Read B Future dereferences avoid associative
via A lookups and thus consume less energy.
Evaluation

Methodology: ¢ Simulate Hotpads using Maxsim simulator (Zsim+Maxine JVM) ¢ 4 Westmere-like OOO cores Hotpads acts like a super-

* 13 Java Applications from Dacapo, Jgrapht, SpecJBB * 3-level cache/pad hierarchy generational collector:
Execution time breakdown: Dynamic memory hierarchy energy: Most objects are collected
. . 1 0)

* GC cost reduced by 8x with Hardware CE * Dynamic energy reduced by 2.7x in the L1 pad. 90% of them

* 34% performance improvement e Large reductions in L1D, Mem and GC never reach main memory

[Allocated EZZ] Evicted KT Collected
< [App (Non-GC) EZZA GC App (Non-GC) [EER L1/D__ BBNI 2 N3NNI Mem | EZZIGC 0008
S£ , ,[BBaseline HiHotpads T o 1.0 | =207
se EmE I B B8 6.8 A @ ¥ ¢ @ 3 0.8 £ 06
E-; 0:5 E 0.6 E % 05
£% N o4 2804
55 O e 2 03
.EE 0.2 ‘25 0.2 %E 0.2
E:O'OBH BH B H BH BH BH BH BH BH BH BH BH BH BH D'DBH BH B H BH BH BH BH BH BH BH BH BH BH BH %Eg;

A T e N WO praneeer et 4ot ot o o0 qera™ IR o Qered® O T '& I?[;*t 'nL ;ut 'HL ;ut II':'I ;n ut

See the paper (https://goo.gl/eXzG6a) for: Pointer rewriting and CE analysis, legacy mode for running conventional apps, coherence, and more!

https://goo.gl/eXzG6a

