
Object-based memory model enables memory safety
& automatic memory management (GC):

+ simplifies programming
+ prevents memory bugs
- adds overheads

A

B
A
B
C

Key Insight: Hiding memory layout in
hardware enables new optimizations for

object-based programs

Hotpads Overview

Rethinking the Memory Hierarchy for Modern Languages

A novel memory hierarchy designed for memory-
safe, object-based languages that support objects
and pointers at the ISA level

Collection-Eviction (CE):
1. Find roots
2. Mark live objects
3. Compact & evict

live objects
4. Update pointers

A

B
A

A

B
A
B

A

B (stale)
A
B
C
D

A

B (stale)

B

D

Free
space

Key Feature 1: Implicit object
movement in response to accesses

Key Feature 4:
Unifying hierarchical

GC and data movement
in hardware

Overheads due to mismatch between flat memory
systems and object-based, memory-safe languages

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez
{poantsai, elainegn, sanchez}@csail.mit.edu

Motivation

Key Feature 2: Pointer rewriting

Execution time breakdown:
• GC cost reduced by 8x with Hardware CE
• 34% performance improvement

Dynamic memory hierarchy energy:
• Dynamic energy reduced by 2.7x
• Large reductions in L1D, Mem and GC

Key Feature 3:
In-hierarchy object

allocation to reduce
memory traffic

L1
Pad

Core
L2

Pad
Main

Memory

Canonical
Tags

Data Array

Objects

Free space

M
e

tad
ata

(w
o

rd
/o

b
ject)

Initial state with 2 objects A and B

L1 Pad L2 Pad Main MemRegFile

Objects

Free
space

A

B

Hotpads Key Features

2

1

3

4

5

Example Hotpads hierarchy Pad Organization

Evaluation

L1 pad
is full

After L1
pad CE

Allocate
Obj. C

Hotpads acts like a super-
generational collector:
Most objects are collected
in the L1 pad. 90% of them
never reach main memory

6

• Simulate Hotpads using Maxsim simulator (Zsim+Maxine JVM)
• 13 Java Applications from Dacapo, Jgrapht, SpecJBB

• 4 Westmere-like OOO cores
• 3-level cache/pad hierarchy

Methodology:

See the paper (https://goo.gl/eXzG6a) for: Pointer rewriting and CE analysis, legacy mode for running conventional apps, coherence, and more!

Future dereferences avoid associative
lookups and thus consume less energy.

Objects are allocated in the fast, efficient L1 pad, rather
than allocated in and fetched from main memory.

C is dead (not pointed by). D is alive (pointed by B). A and B are
not collected because they are copies . B is recently-used.

Many objects die young and never reach main memory.
Frequently used objects are kept in small, fast pads.

Read B
via A

Read A

https://goo.gl/eXzG6a

